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ABSTRACT

Pitch glide is an important effect that occurs in nearly all plucked
string instruments. In essence, large amplitude waves traveling on
a string during the note onset increases the string tension above
its nominal value, and therefore cause the pitch to temporarily in-
crease. Measurements are presented showing an exponential re-
laxation of all the partial frequencies to their nominal values with
a time-constant related to the decay rate of transverse waves prop-
agating on the string. This exponential pitch trajectory is sup-
ported by a simple physical model in which the increased tension
is somewhat counterbalanced by the increased length of the string.
Finally, a method for synthesizing the plucked string via a novel
hybrid digital waveguide-modal synthesis model is presented with
implementation details for time-varying resonators.

1. INTRODUCTION

Tension modulation, the source of significant audible nonlinear ef-
fects in a vibrating string, has been thoroughly studied by acousti-
cians, physicists as well as electrical engineers [1, 2, 3, 4, 5, 6, 7],

Pitch glide, commonly known in the literature as pitch varia-
tion, is the result of nonlinear interactions between the transverse
vibration of a string and its tension. When a string is plucked at
high amplitudes, the effective length of the string increases result-
ing in an increase in tension. It can be shown that the frequency
of each mode of the system increases by approximately the same
factor [8]. As observed from recorded data [9, 10, 11], the ini-
tial transient of a recorded tone exhibits audible pitch glide: the
frequencies of the partials begin at greater values, and quickly ap-
proach their steady-state values.

Another significant musical effect resulting from tension mod-
ulation is nonlinear excitation/generation of missing modes as ana-
lyzed and shown experimentally in [5]. The excitation/generation
of missing modes on a musical instrument such as the violin, is
caused by a non-zero bridge admittance and angling of the string
beyond the bridge, resulting in driving forces that occur at frequen-
cies that are twice those of modes on the string. In our work, we
address the first nonlinear effect: pitch glide.

In [9], pitch glide is estimated and modeled through tension
modulation. Since actual tension modulation is oscillatory, they
approximate it with a mean tension increase. As a result, a rela-
tionship between the mean tension and the effective fundamental
frequency of the vibrating string over time, caused by changes in
wave speed, is made. For synthesis, a digital waveguide model
[12, 13, 14] with a time-varying fractional delay filter [15, 16, 17]
is used to model the changing length of the string and thus the
pitch glide exhibited at the onset of a plucked tone.

The main parameter estimated is the fractional delay value as
a function of time, d(n) in samples. As defined in Eq. 1, d(n) is
a function of A = ES/Fnom, where E is Young’s Modulus, S
is the cross sectional area of the string and Fnom is the nominal
tension on the string at rest, Lnom is the nominal length of the
string, L̂nom is the rounded nominal string length and Ldev(n),
the change in length of the string with respect to the string at rest.

d(n) ≈ −1

2

n−1X
l=n−1−L̂nom

(1 +A)
Ldev(l)

Lnom
(1)

Given a value for A, which can be computed from physical
properties of the string, Ldev(n) can be calculated. But as noted
in [9] estimation of A and Ldev(n) from recorded tones is non-
trivial. During synthesis, elongation of the string may be com-
puted through a sparse-squared-sum of delay-line values [9]. This
work, on the other hand, makes use of the fact that pitch glide,
for a plucked string, depends solely on the initial amplitude of the
pluck. Furthermore, we implement the effects of a change in wave
speed directly as modal resonators with time-varying frequencies,
as opposed to modulation of the delay-line length. Due to limits of
audio perception, it is only necessary to modulate the frequencies
of the lower partials.

In [9], methods for estimation strive to only reproduce the
effects of tension modulation and not to accurately estimate the
physical properties of the string. Along similar lines, our work
aims to reproduce pitch glide accurately for synthesis and not to
obtain physical parameters of the string. Our synthesis model
parametrizes pitch glide to accurately match our analyses of the
observed pitch-variation per-partial of a recorded guitar tone. As
the results show, our model is not only simple, but easy to estimate
and is directly implemented in our synthesis model, an extension
of the digital waveguide model similar to that proposed in [18].
Furthermore, our model and data of pitch glide fit that of the the-
ory, as each partial exhibits the same pitch glide trajectory.

Other treatments of the effects of tension modulation have
been made. In [19, 20], a conservation of energy formulation is
given and different finite difference schemes with conditions for
stability are investigated. In [21], investigation into aliasing result-
ing from varying delay line lengths using fractional delay filters
is given. Since our synthesis model avoids changing delay line
lengths in our digital waveguide, aliasing is not a concern for our
model. [22] showed that energy conservation techniques can be
extended to digital waveguide models using fractional allpass fil-
ters by reducing specific wave digital filters to simple first- and
second-order all-pass filters.

In [23], a spatially distributed model of a nonlinear vibrating
string is used in place of a digital waveguide to model tension

DAFX-1



Proc. of the 12th Int. Conference on Digital Audio Effects (DAFx-09), Como, Italy, September 1-4, 2009

modulation on the string divided into segments. The delay line
is replaced by first-order allpass sections to allow tension modu-
lation to be modeled at any point along the string. The trade-off
for the increase in modeling capability is efficiency, as what were
previously shift operations are replaced with first-order filtering
operations.

In [24], the functional transformation method is applied to a
nonlinear vibrating string. Due to the nonlinearity, the method
obtains only an implicit equation, not a multidimensional transfer
function model as was obtained for the linear case, for implemen-
tation after inverse transformations and discretizations.

In Section 2, we present methods for analyzing a recorded tone
and extracting pitch glide trajectories on a per-partial basis. In Sec-
tion 3, we formulate an empirical model to match the pitch glide
phenomenon observed from real data. In Section 3.1, we present
methods for optimizing parameters of our model from recorded
data. In Section 4, we discuss synthesis of pitch glide with a hybrid
digital waveguide-modal synthesis model. and specific implemen-
tation issues and their resolution and we conclude with Section 5.

2. ANALYZING PITCH VARIATION

In this section, we briefly outline our methods for obtaining fre-
quency trajectories on a per-partial basis and present the resulting
data.

2.1. Bandpass Filtering for a Partial

For a recorded guitar tone, to observe partial i, we apply a band-
pass filter to the original tone.

If Hbpi is our bandpass filter for the ith partial and x(t) is our
recorded tone, we define the bandpassed signal as

xi(t) = hbp,i ∗ x(t) (2)

We chose to use a high-order FIR filter designed using the
Parks-McClellan algorithm that had a 60dB magnitude drop out-
side of the pass-band, and a linear phase response within the pass-
band. Since analysis occurs offline, we did not further investigate
more efficient methods and filters for bandpass filtering for a single
partial of a recorded tone. However, efficient structures for partial
extraction have been investigated, as in [25], where a harmonic-
extraction filter is introduced.

2.2. STFT and Quadratic Interpolation

Once xi(t) is obtained, we perform a Short-time Fourier-transform
(STFT) [26]. Within each frame of the STFT, we perform quadratic
interpolation to obtain the exact location of the peak [27, 26]. Fig-
ure 1 shows the results of our frequency tracking using the STFT
for the second partial of a recorded high ’e’ string. Note the pitch
glide that occurs at the onset of the signal. As shown, there is a
near 1 Hz difference between the initial frequency value and the
steady-state value. Furthermore, the duration of the pitch glide is
about one and a half seconds. In our analyses, we used a Ham-
ming window of size 215 samples, FFT length 216 samples and
90 percent overlap. Figure 2 shows the normalized frequency tra-
jectories of the first 15 partials of the same recording of the high
’e’ string analyzed to produce Figure 1. We note that normaliza-
tion corresponds to dividing the frequency trajectory by its steady-
state/nominal frequency value. For the purposes of plotting, each
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Figure 1: Pitch glide of the second partial of a recording of a high
’e’ string.
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Figure 2: Pitch glide of the first 15 partials of a recording of a high
’e’ string. Note the frequency trajectories have been normalized.
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Figure 3: The dot-dashed curve shows the mean of the normal-
ized frequency trajectories (η(t)) of the first 15 partials shown in
Figure 2. The triangle-solid curve shows the fitted model with
τ0 = 0.005 after one iteration.

trajectory is further shifted such that the mean steady-state fre-
quency of each partial is one. Though the difference in frequency
of the second partial over time is about a Hz over the span of a sec-
ond and a half, we defer readers interested in the psycho-acoustic
studies of the audibility of pitch glide to [28].

3. PITCH GLIDE MODEL

From the analyzed frequency trajectories in Section 2, we have
found that the empirical measurements accurately match the fol-
lowing model:

νi(t) = νi(1 + αe−t/τ ) (3)

where νi(t) corresponds to the frequency of partial i at time t, νi

corresponds to the steady-state frequency of partial i and α and τ
are parameters of our model.

From Eq. 3, when α is zero, our model exhibits no pitch glide.
However, when α is non-zero, the exponential term yields the ef-
fect. Intuitively, when a string is plucked harder, α will be greater
thus exhibiting greater pitch glide. Furthermore, settingα = eβ/τ ,
we can rewrite Eq. 3 as

νi(t) = νi(1 + αe−t/τ )

= νi(1 + eβ/τe−t/τ )

= νi(1 + e−(t−β)/τ ) (4)

Therefore, as shown in Eq. 4, our α parameter corresponds
exactly to our starting position on the decaying exponential with
time-constant τ . More precisely, α determines the shift of the ex-
ponential curve to time zero.

3.1. Parameter Estimation

In this section, we present methods for obtaining τ and α of our
pitch glide model described in Section 3. Since our optimization
problem is nonlinear, we present an iterative method for solving
for α and τ .
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Figure 4: The dot-dashed curve shows the mean of the normal-
ized frequency trajectories (η(t)) of the first 15 partials shown in
Figure 2. The triangle-solid curve shows the fitted model with
τ2 = 0.209 after two iterations.
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Figure 5: The dot-dashed curve shows the mean of the normal-
ized frequency trajectories (η(t)) of the first 15 partials shown in
Figure 2. The triangle-solid curve shows the fitted model with
τ13 = 0.3049 after convergence in 13 iterations. As shown, the
model is a near perfect fit to the mean of the normalized frequency
trajectories.
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Figure 6: The multiple dashed-line curves show the normalized
frequency trajectories of the first 15 partials also shown in Fig-
ure 2. The bold-solid curve shows the fitted model. As shown, the
model fits the frequency trajectories well.

Given the frequency trajectories obtained in Section 2, we de-
fine the frequency trajectory for partial i as ωi(t). We normalize
each partial frequency trajectory by dividing by the minimum fre-
quency value in that trajectory:

ωi,norm(t) = ωi(t)

ffi
min

j
ωi(j) (5)

We now average the trajectory decays over time for all partials:

η(t) =
1

N

NX
i=1

ωi,norm(t) (6)

We reformulate our model from Eq. 3 as follows such that
normalized frequencies are used so that only a single optimization
of the parameters of τ and α need be computed:

νi(t) = νi(1 + αe−t/τ )

νi(t)/νi = 1 + αe−t/τ (7)

η̂(t) = φ1 + φ2e
−t/τ (8)

where α = φ2/φ1. We reformulate our model to add an extra de-
gree of freedom, so that given a value for τ , solving for the optimal
values for φ1 and φ2 corresponds to a least squares formulation:

min
φ1,φ2

TX
t=0

(η(t) − η̂(t))2 (9)

The solution to the optimization problem in Eq. 9, is shown in
Eq. 12 and simply corresponds to the product of the pseudo-inverse
of the matrix A and vector b, defined in Equations 10 and 11, re-
spectively.

A =

2
4 | |
1 e−t/τ

| |

3
5 (10)
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Figure 7: The dot-dashed curve shows the mean of the normalized
frequency trajectories (η(t)) of the first 14 partials of an open high
’e’ plucked at a lower amplitude. The triangle-solid curve shows
our fitted model. Note that the same time constant, τ , computed for
an open high ’e’ plucked at a higher amplitude is used. However,
α differs, corresponding to a shift in our pitch glide model curve.
As shown, the model is a good approximation to the mean of the
normalized frequency trajectories.

b =

2
6664
η(0)
η(1)

...
η(T )

3
7775 (11)

Φ = (ATA)−1AT b (12)

where Φ =

»
φ1

φ2

–
.

We now estimate τ by dividing b by φ1, and fitting a straight-
line to the initial points of log(b/φ1 − 1). We now set our new
estimate for τ to be τ = −1/m where m corresponds to the slope
of our fitted line.

We iterate, optimizing values for Φ and τ until successive val-
ues of τ differ by an optimization criterion. In practice, we stop
our optimization when τ changes by less than 10−4. Figure 3
shows our optimization after one iteration with τ0 = 0.005. Fig-
ure 4 shows our optimization after two iterations with τ2 = 0.209.
Lastly, Figure 5 shows our fitted model after convergence in 13
iterations with τ = 0.3049 over η(t) and Figure 6 shows our fit-
ted model over the normalized frequency trajectories of the first 15
partials.

3.2. A Softer Pluck

Using τ = 0.3049 obtained in Section 3.1 for a recording of an
open high ’e’ string plucked at a high amplitude, we compare our
model to a recording of an open high ’e’ string plucked at a lower
amplitude. Note that given a value for τ , we need simply compute
α as described in Section 3.1, corresponding to the shift of our
exponential curve. Figure 7 shows our fitted model with the same τ
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Figure 8: A line with slope −2/τ , with τ computed in Section 3.1
is plotted over the square of the slope of the values of the signal in
decibels. As shown, −2/τ corresponds well to the attenuation of
the analyzed tone as expected.

computed from Section 3.1 but with a different fitted α parameter.
Note that the pitch glide is significantly reduced, as is expected
from a softer pluck.

3.3. Physicality of the Glide Model

As described in [5], the pitch glide time constant is related to the
time constant of the attenuation of the tone. In this section, we
relate the pitch glide model defined in Section 3 with the decay of
waves on the string. We specify the speed of traveling waves on
the string as follows:

c =

r
T

ε
(13)

where T corresponds to the tension on the string and

ε = m/L (14)

where m corresponds to the mass of the string and L the length of
the string.

We now define the fundamental frequency of the vibrating
string as a function of the length of the string:

f(L) =
c

2L
(15)

=

r
T

4mL
(16)

≈
r

T

4mL0
(17)

Note in Eq. 17, we assume that L = L0 + δL and that δL << L0.
We now relate the length of the string to the tension on the string:

L(T ) = L0 + λT (18)

Note that when the tension on the string is zero, the string resides
at its nominal length L0. Furthermore, this approximation corre-
sponds to a small tension approximation so that the tension and

length are linearly related [5]. Similarly, we can rewrite Eq. 18 so
that tension is linear with respect to the change in string length.

T (L) =
L− L0

λ
=
δL

λ
(19)

We now substitute for tension, using Eq. 19, in Eq. 17:

f(L) ≈ [
(L− L0)/λ

4mL0
]1/2 (20)

= [
δL/λ

4mL0
]1/2 (21)

f(L0 + ζ) ≈ [
ζ/λ

4mL0
]1/2 (22)

As shown in Eq. 21, the fundamental frequency of the string in-
creases according to the square-root of the increase in the length of
the string. Note in Eq. 22, f(L0 + ζ) corresponds to the nominal
fundamental frequency of the string when the string is stretched
such that its total length is L0 + ζ. We now define the length
of the string with respect to the waveform on the string. When
a string is displaced, its length increases. Therefore, we specify
a time-varying length of the string with respect to the transversal
displacement of the string with respect to time and space, ψ(x, t),
as follows:

ψ(x, t) ≈ e−t/τ · µ(x) (23)

where we assume that each point on the string exhibits a displace-
ment µ(x) and the displacement decreases exponentially over time.

L(t) =

Z (L0+ζ)

0

p
(dx)2 + (dψ)2 (24)

=

Z (L0+ζ)

0

dx · [1 + (
dψ

dx
)2]1/2 (25)

≈
Z (L0+ζ)

0

dx(1 +
1

2
(
dψ

dx
)2) (26)

= L0 + ζ + e−2t/τ ·
Z (L0+ζ)

0

dx

2
(
dµ(x)

dx
)2|t=0(27)

= L0 + ζ + e−2t/τ · γ (28)

where we define

γ =

Z (L0+ζ)

0

dx

2
(
dµ(x)

dx
)2|t=0

Note that γ depends solely on the intial displacement of the string
over x and is independent of time t.

We now substitute L(t) from Eq. 28 into Eq. 17 to obtain a
time-varying fundamental frequency.

f(t) = f(L(t)) (29)

≈ [
ζ + e−2t/τ · γ

4mL0λ
]1/2 (30)

≈ [
ζ

4mL0λ
]1/2(1 +

1

2
e−2t/τ · γ/ζ) (31)

As Eq. 31 shows, the fundamental frequency as a function of
time depends on the square of the slope of the displacement of
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Figure 9: Hybrid digital waveguide model with extended commuted synthesis highpass filter for excitation and parallel resonators for
lower-partial realization.

Figure 10: Block diagram of the recursive filter resonator used to
implement all parameters of an exponentially-decaying sinusoid.

the string, which decays exponentially at time-constant −2/τ . In
Figure 8, a straight line with slope −2/τ , with τ computed from
Section 3.1 is plotted over the square of the space derivative of
the same waveform analyzed in Section 3.1. As shown, the slope
matches the decay well, thereby supporting the derivations out-
lined in this section and the physicality of the pitch glide model
defined in Section 3.

4. THE SYNTHESIS MODEL

We propose a string synthesis model that is hybrid: a digital waveguide-
modal synthesis model, similar to the digital-wavguide in parallel
with a bank of resontars presented in [29]. Since the digital wave-
guide provides all partials up to half the sampling rate, we use a
well-tuned digital waveguide to the correct fundamental frequency,
and a bank of resonators to accurately model the lower, psycho-
acoustically significant partials.

In essence, complex characteristics such as beating and two-
stage decay can be precisely modeled with two second-order res-
onators. However, we present a novel method negotiating the
lower partials of the tone produced by the digital waveguide and
the parallel bank of resonators. In [18], the bank of parallel second-
order resonators are parameterized according to the partials gener-
ated by the digital waveguide. Rather than accommodate the par-
tials produced by the digital waveguide, we remove them from our
synthesis model. Instead of notch-filtering each partial or highpass
filtering the output of the digital waveguide, we present a cost-
free real-time implementation by high-pass filtering the excitation
signal, therefore removing energy at the lower partials that would
have otherwise been excited in the digital waveguide.

Analogous to concepts in commuted synthesis presented by
[30, 31, 12], by high-pass filtering the excitation signal offline,
removing the lower partials of the digital waveguide is free for
real-time synthesis.

4.1. The Resonators

To implement the lower partials, we present second-order resonators
that when impulsed, will reproduce the sinusoids of the original
tone. However, the primary advantage of using second-order res-
onators is in re-exciting the string. The excitation signal is used to
drive the resonators for string re-striking, and for creating a differ-
ent tone per unique excitation with the same coupling parameters
of the lower partials.

As Figure 9 shows, resonator RESf,i synthesizes partial i.
Similar to [18], we propose a two-pole one-zero filter for each si-
nusoid. Therefore, partial i will consist of two independent res-
onators each implementing an exponentially-decaying sinusoid. If
σi,j , ωi,j , θi,j and ri,j represent the exponential decay-rate, fre-
quency, initial phase and initial magnitude of the jth sinusoid of
partial i, the transfer function for the second-order resonator can
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be written as follows:

HRESf,i,j =
ai,j

1−pi,j
+

āi,j

1− ¯pi,j
(32)

ai,j = 1
2
· ri,j · ejθi,j (33)

pi,j = gi,j · ejωi,j (34)

gi,j = eσi,j/fs (35)

4.2. Implementation Details

Implementation issues arise when changing the frequencies of os-
cillators. For example, using Direct-Form and its variant filter
structures lead to artifacts such as amplitude modulation in the re-
sulting signal.

To address this issue, we implement the resonators of our hy-
brid digital waveguide-modal synthesis model using recursive al-
gorithms. As shown in Figure 10, the resonator structure used is
described in [32] and is a variant of the structures described in [33].

Defining x̂i(t) as our synthesis of the ith partial, Eq. 36 de-
scribes our model for a single partial.

x̂i(t) = ri,1e
σi,1t cos(2πfi,1(t)t+ θi,1) . . .

+ri,2e
σi,2t cos(2πfi,2(t)t+ θi,2) (36)

Thus, a single recursive resonator structure is used per exponentially-
decaying sinusoid, resulting in two resonator structures per partial.
We now relate the parameters of an exponentially-decaying sinu-
soid to the parameters of our resonator structure. Given an arbi-
trary initial amplitude, decay-rate, frequency and phase, r, σ, f
and φ, respectively, we define the following parameters shown in
Figure 10:

z−1
1 (0) = cos(φ) (37)

z−1
2 (0) = − sin(φ) · sin(2πfnom/fs) (38)

We initialize our two delays as shown above in Equations 37 and 38
to account for the initial phase, φ. Note that fs corresponds to the
sampling-rate. The decay-rate, σ, is implemented within the re-
cursive filter structure as g, defined as follows:

g = e2σ/fs (39)

To account for the time-varying frequency, the structure imple-
ments a time-dependent gain that is defined as follows as Aρ:

ρ(0) = sin(2πfnom/fs) (40)

ρ(i) = sin(2πf(i)/fs) (41)

Aρ = ρ(i)/ρ(i− 1) (42)

(43)

where fnom corresponds to the steady-state frequency of the exponentially-
decaying sinusoid andAρ depends on the current value of ρ(i) and
its previous value ρ(i− 1). The node signals defined as A,B,C,D
and E are defined as follows:

k = cos(2πfnom/fs) (44)

A = z−1
1 (i) + x(i) (45)

D = k ·A (46)

E = D + z−1
2 (i) (47)

C = k ·E (48)

B = C − A (49)

and lastly our two delay samples are updated as follows:

z−1
1 (i+ 1) = E (50)

z−1
2 (i+ 1) = g ·Aρ ·B (51)

y(i) = r · E. (52)

and our output at sample, y(i), is defined above in Equation 52.

5. CONCLUSIONS

In this paper, we presented an empirical model that accurately de-
scribes the frequency trajectory of partials of a nonlinear string ex-
hibiting pitch glide. Our model depends solely on the amplitude of
the initial pluck of the tone. We also present methods for optimiz-
ing parameters of our model from recorded tones and integration
of our pitch glide model into a hybrid digital-waveguide/modal-
synthesis model with use of recursive algorithms.
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