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ABSTRACT

In this paper we present a model for beat-synchronous anal-
ysis of musical audio signals. Introducing a real-time beat track-
ing model with performance comparable to offline techniques, we
discuss its application to the analysis of musical performances
segmented by beat. We discuss the various design choices for
beat-synchronous analysis and their implications for real-time im-
plementations before presenting some beat-synchronous harmonic
analysis examples. We make available our beat tracker and beat-
synchronous analysis techniques as externals for Max/MSP.

1. INTRODUCTION

The automated analysis of musical performance in real-time can
provide useful knowledge about the nature of that performance.
This information can then be used in interactive musical systems,
such as score following systems [1], to create intelligent and ar-
ticulate musical responses, automatically, to human musical initi-
ations.

Beat-synchronous analysis is the analysis of a musical signal
segmented by the rhythmic and metrical events of that same signal.
This is achieved through the use of a beat tracker (e.g. [2]) - a
technique for automatically detecting the dominant metrical pulse,
or ‘beat’, of a piece of music. Beat-synchronous analysis has been
used widely in offline applications and has been shown to improve
performance, for example in chord recognition [3] and structural
segmentation [4].

Encouraged by these positive results, we seek to extend the
use of beat-synchronous analysis to real-time applications. We
present a new model for real-time beat tracking, showing perfor-
mance comparable to state of the art offline models. We then
present a methodology for beat-synchronous analysis, in partic-
ular harmonic analysis, discussing the various design choices and
their implications for real-time applications.

There are several benefits of using a beat-tracker to augment
harmonic analysis. Firstly, in many forms of music, harmonic
changes often occur at beat locations and so segmentation by a
rhythmic feature such as the beat may improve performance. Sec-
ondly, we may wish to use the harmonic analysis to infer some-
thing about the structure of the performed music, using for exam-
ple some form of self-similarity analysis. In contrast to a frame
by frame analysis where there are many frames per beat, beat-
synchronous segmentation greatly reduces the size of the data, al-
lowing the analysis of longer segments of audio. A further benefit
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of beat-synchronous analysis is that the same musical phrase or
passage will be represented using the same number of data points
regardless of tempo variations.

Beat-synchronous analysis has been used previously in real-
time applications [5], creating a sub-beat divided matrix represen-
tation of an audio signal through beat-synchronous spectral anal-
ysis. However in this paper we present a full discussion of the
merits and disadvantages of the different design choices, and their
implications for real-time processing, outside of the context of the
application.

This paper is structured as follows. In section 2 we present a
model for real-time beat tracking. Section 3 describes the use of
this beat tracker in a methodology for beat-synchronous analysis.
In section 4 we present an evaluation and discussion of both the
beat-tracker and the different methods for beat-synchronous anal-
ysis. In section 5 we present our conclusions.

2. BEAT TRACKING

In this section we present our real-time beat tracking model. It is
a formed as a hybrid of two existing systems, drawing on the flex-
ibility of Ellis’ dynamic programming algorithm [6] for assigning
beat locations and the tempo estimation stage of the Davies and
Plumbley [7] method.

2.1. Input Feature

The input feature for our beat tracking system is the complex spec-
tral difference onset detection function (DF) [8]; a continuous mid-
level representation of an audio signal which exhibits peaks at
likely note onset locations. The onset detection function Γ(m)
at samplem is calculated by measuring the Euclidean distance be-
tween an observed spectral frameXk(m), and a predicted spectral
frame X̂k(m) for all bins k,

Γ(m) =

KX
k=1

|Xk(m)− X̂k(m)|. (1)

Following the approach in [7] we calculate the DF with a temporal
resolution of 11.6ms. For a full derivation see [8].

2.2. Beat Prediction

Our underlying model for beat tracking assumes that the sequence
of beats, γb, will correspond to a set of approximately periodic
peaks in the onset detection function. We follow the dynamic pro-
gramming approach of Ellis [6]. At the core of this method is
the generation of a recursive cumulative score function, C∗(m).

DAFX-1

http://www.elec.qmul.ac.uk/digitalmusic
mailto:adam.stark@elec.qmul.ac.uk


Proc. of the 12th Int. Conference on Digital Audio Effects (DAFx-09), Como, Italy, September 1-4, 2009

whose value atm is defined as the weighted sum of the current DF
value Γ(m) and the value of C∗ at the most likely previous beat
location,

C∗(m) = (1− α)Γ(m) + αmax
v

(W1(v)C(m+ v)) . (2)

We search for the most likely previous beat over the interval (into
the past) v = −|2τb|, . . . ,−|τb/2| where τb specifies the beat
period – the time (in DF samples) between beats. To give most
preference to the information exactly τb samples into the past, we
multiply C∗ by a log-Gaussian transition weighting,

W1(v) = exp

„
−(η log(−v/τb))2

2

«
. (3)

The method for determining τb is given in section 2.3.
In terms of parameterisation of (2) and (3), the value of α sets

the balance between new information in the onset detection func-
tion and existing past information inC∗. The value of η defines the
tightness of the transition weighting W1. By default, we set α=0.9
and η=5. We explore the effect of varying α and η in Section 4.

The calculation of C∗(m) is updated at each new detection
function sample Γ(m), therefore it does not violate our real-time
constraint. Ellis’ implementation is non-causal because it stores
the location of the best previous beat for each sample m and then
recovers the beat locations via a recursive backtrace once the en-
tire onset detection function has been analysed. For our real-time
system we need to predict the locations of future beats in the audio,
without the opportunity to observe the complete input signal.

The recursive calculation of the cumulative score function C∗

means that it carries some momentum where by reliable beat lo-
cations (for the non-causal system [6]) can still be found in the
presence of arrhythmic playing or silence. To make beat predic-
tions in our causal system we directly exploit the latter property
by continuing to generate the cumulative score, C∗, over a one-
beat window into the future. Since future information in the onset
detection function is unobservable, we ignore its contribution by
temporarily setting α=1 in (2), (returning it to its default value
once the beat prediction has been made and new DF samples ar-
rive). Each predicted beat γb+1 is made at a fixed point in time
m0 once the current beat γb has elapsed, m0 = γb + τb/2. The
predicted beat itself is found as the index of the maximum value
over the one-beat window

γb+1 = m0 + arg max
v

(C∗(m0 + v)W2(v)) (4)

where v = 1, . . . , τb specifies the future one-beat window and
W2(v) is a Gaussian weighting centred on the most likely beat
location (m0 + τb/2),

W2(v) = exp

„
− (v − τb/2)2

2(τb/2)2

«
. (5)

Due to the dependence on a previous beat location in (4) the
real-time beat tracker must be initialised in some way to find the
first beat. In Section 4 we explore the effect on performance of
providing an arbitrary first beat and a user-defined initialisation
(e.g. from a “count-in”). A graphical example of the beat predic-
tion process is shown in Figure 1. The predicted beat is shown
beyond the observed signal.
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Figure 1: Top: Onset Detection with predicted beat locations. Bot-
tom: Cumulative score (solid line) with future cumulative score
(dotted line). Current time is shown as the bold grey vertical line.

2.3. Tempo Induction

To be able to track beats in music that varies in speed we need
to regularly update the tempo estimate used by the beat tracking
stage. In line with the beat prediction methodology, the tempo is
re-estimated once each new predicted beat has elapsed.

The approach we adopt to estimating the tempo (and hence
beat period τb) is based on components from the two state model
of Davies and Plumbley [7]. The method can be summarised in the
following five steps: i) we extract a six second analysis frame (up
to m0 from (4)) from the onset detection function Γ(m); ii) we
preserve the peaks in Γ(m) by applying an adaptive moving mean
threshold to leave a modified detection function Γ̃(m); iii) we take
the autocorrelation function of Γ̃(m); iv) we pass the autocorre-
lation function through a shift-invariant comb filterbank weighted
by a tempo preference curve; and v) we find the beat period as
in the index of the maximum value of the comb filterbank output,
R(l). An example comb filterbank output is shown in the top plot
of Figure 2. For a complete derivation of R(l), see [7].

To minimise the common beat tracking error of switching be-
tween metrical levels [7] we restrict the range of tempi to one
tempo octave from tmin=80 beats per minute (bpm) to tmax=160
bpm. We map the lag domain signal R(l) into the tempo domain
between tmin and tmax to giveRb(t), using the following relation-
ship

Rb(t− tmin) = R(|60/(0.01161× t)|) t = tmin, . . . , tmax

(6)
where 0.01161 (e.g. 512/44100) is the temporal resolution of the
onset detection function in seconds, which is independent of the
sampling frequency of the audio. More generally, the relationship
between lag (in DF samples) and tempo (in bpm) is

l =

˛̨̨̨
60

0.01161× t

˛̨̨̨
(7)

Example plots of R(l) and a corresponding Rb(t) are shown in
Figure 2.

As in existing work (e.g. [9]) we assume that tempo is a
slowly varying process. We enforce some dependence on consec-
utive tempo estimates by finding the current tempo tb based on
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Figure 2: Top: Comb Filterbank Output R(l). Bottom: R(l)
mapped into the tempo domain to give Rb(t).

the previous estimate tb−1. For this purpose we use a one-step
“Viterbi-like” decoding. To model the slowly varying tempo, we
use a transition matrix A(ti, tj) where each column is a Gaussian
of fixed standard deviation σ = (tmax − tmin)/8,

A(ti, tj) = P (tb − tmin = tj |tb−1 − tmin = ti)

=
1

σ
√

2π
exp

„
− (ti − tj)2

2σ2

« (8)

and ti, tj = 1, . . . , (tmax − tmin).
At each new iteration, we store the maximum value of the

product of each column of A with the stored state probabilities
∆b−1 from the previous iteration,

∆b(tj) = max

0@tj=tmax−tminX
tj=1

A(ti, tj)∆b−1(tj)

1A . (9)

We then update ∆b to reflect the tempo range comb filter output
for the current beat frame Rb by taking the element-wise product
of the two signals,

∆b(tj) = Rb(tj)∆b(tj). (10)

To prevent ∆b growing exponentially or approaching zero at each
iteration we normalise it to sum to unity:

∆b(tj) =
∆b(tj)Ptmax−tmin

tj=1 ∆b(tj)
(11)

We then find the current tempo tb as the index of the maximum
value of ∆b

tb = tmin + arg max
tj

(∆b(tj)) (12)

and convert it back to beat period τb using (7).

3. BEAT-SYNCHRONOUS HARMONIC ANALYSIS

The causal nature of our beat tracking system allows its real-time
implementation. In this section we present a model for real-time
beat-synchronous harmonic analysis and its use in the implemen-
tation of a spectrogram, chromagram and chord detection system.
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Figure 3: Three different methods for beat-synchronous harmonic
analysis. ‘Rep.’ stands for ‘Representation’.

3.1. A Model for Beat-Synchronous Harmonic Analysis

We define S, the length of our beat-synchronous segment in audio
samples, to be related to the beat period, τ , also in audio samples,
by S = τ

ω
where ω is an integer greater than or equal to 1. This

allows us to choose the number of segments per beat and there-
fore perform analysis at metrical levels lower than that of the beat
tracker.

Each segment of length S will contain a number of audio
frames, Q = b S

N
c where N is the length of each audio frame

in audio samples. To perform a beat-synchronous analysis, we
present three methods which are discussed below.

3.1.1. Method 1

The first method accumulates all the audio from the frames within
a beat-segment and then calculates a spectral transform followed
by a harmonic representation, such as a chromagram [10]. This
can be seen in the first row of Figure 3. A problem with this is
that the amount of audio that it is necessary to accumulate varies,
from beat to beat, with the tempo. A further difficulty relates to
the level of computational complexity. Assuming N is a power of
2, computing the fast Fourier transform (FFT) of a single longer
segment of length N requires more calculations than computing
Q FFTs of length N/Q. This is demonstrated by:

O(N log(N)) > O(Q · N
Q

log(
N

Q
)) (13)

for Q = 2y and 1 ≤ y < r for N = 2r . This reduces to:

O(N log(N)) > O(N log(
N

Q
)) (14)

This problem is exacerbated by the fact that all processing is car-
ried out in one step and is not distributed across time as is the case
with computing multiple shorter spectral transforms. However, a
benefit of this technique is that the larger size of the spectral trans-
form would allow greater frequency resolution for analysis pur-
poses.

3.1.2. Method 2

The second method performs the spectral transform on each frame,
accumulates spectral frames and then calculates a harmonic repre-
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Figure 4: A beat-synchronous chromagram.

sentation. This distributes the calculations of the spectral trans-
form across smaller frames and, as was shown in section 3.1.1,
is more efficient than computing a spectral transform on the com-
bined frames. Also, by only computing a single harmonic repre-
sentation, the amount of processor usage is minimised. However,
our harmonic analysis algorithm may benefit from several analy-
ses, and so, depending upon the analysis in question, a single har-
monic representation may not be as reliable as the accumulation of
several over a number of frames.

3.1.3. Method 3

Method 3 calculates both the spectral transform and harmonic rep-
resentation on each frame and then accumulates the results of the
harmonic representations. The difference between methods 2 and
3 is that method 2 uses temporal smoothing of the results of the
spectral transforms while the method 3 uses temporal smoothing
of the results of several harmonic representations. The preferred
method is determined by the nature of the analysis technique in
question, given these differences in implementation. It is also pos-
sible that, should the harmonic analysis merely involve a summa-
tion over spectral bins, methods 2 and 3 will be produce identical
results. However, it should be noted that the computation of both
a spectral transform and a harmonic representation at each frame
is less efficient than the approach of method 2.

3.2. Frame Overlap

An issue arises with some harmonic analysis algorithms as we
need a frame size that is large enough to provide sufficient fre-
quency resolution to represent low frequencies. If this frame size
is large (some techniques can use a frame size of more than 0.5
seconds [10]) then we are left with very few frames per beat. A so-
lution is to use a larger buffer and a small hop size to increase the
number of analyses between beats. However, we have the problem
that the overlap may cause audio from one beat to be considered
in the next beat. This may contain harmonic information that is
dissimilar to the audio we wish to analyse. As a result, we suggest
clearing the audio buffer at each beat after the analysis by replac-
ing it with zeros.

3.3. Beat-Synchronous Spectrogram

To calculate a beat-synchronous spectrogram, we calculate each
spectral frame f using the Fourier transform:

Xf (k) =

N−1X
n=0

x(n)e−j2πkn/N (15)

for 0 ≤ k < N , where x(n) are the samples of the audio frame
and N is the frame size. Then we calculate the Fourier transform
for the beat segment, b, by:

Xb(k) =

F−1X
f=0

|Xf (k)| (16)

for 0 ≤ k < N , where F is the number of frames. For method 1,
F = 1 and for methods 2 and 3 F > 1.

3.4. Beat-Synchronous Chromagram

We calculate a beat-synchronous chromagram, Φb(i), using the
technique presented in [10], as follows:

Φb(i) =

H−1X
h=0

Φh(i) (17)

where i is the chroma bin index, i = 0, 1, ..., I − 1 where I = 12
and Φh is the hth chromagram calculated from H spectral frames.
For methods 1 and 2, H = 1, while H > 1 for method 3. An
example beat-synchronous chromagram can be seen in Figure 4.

3.5. Beat-Synchronous Chord Analysis

We implement a beat-synchronous chordal analysis by classify-
ing the beat-synchronous chromagram presented in section 3.4 us-
ing the technique presented in [10]. Implementations of all beat-
synchronous analysis techniques and the beat tracking model pre-
sented in section 2 are available as externals for Max/MSP 1.

4. EVALUATION

4.1. Beat Tracking Performance

We measure the performance of our beat tracking algorithm on an
existing annotated database [11] that has been used for the com-
parison of beat tracking models [7]. The database contains 222
musical excerpts (each about 60s in length) across a wide range
of musical styles. We measure performance using the continuity-
based evaluation metric as used in [7]. We calculate:

• CMLc: the ratio of the longest continuously correctly
tracked section to the length of the file, with beats at the
correct metrical level.

• CMLt: the total number of correct beats at the correct met-
rical level.

• AMLc: the ratio of the longest continuously correctly
tracked section to the length of the file, with beats at al-
lowed metrical levels.

• AMLt: the total number of correct beats at allowed metri-
cal levels.

1http://www.elec.qmul.ac.uk/digitalmusic/people/adams/bsa/
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Beat CMLc CMLt AMLc AMLt

Tracker (%) (%) (%) (%)

SDP 51.7 58.7 63.3 73.6

SDP+tempo 55.0 65.3 64.0 75.7

SDP+beat 60.6 71.0 64.9 76.5

KEA (NC) 55.7 62.4 70.0 80.0

DP (NC) 54.8 61.2 68.1 78.9

Table 1: Comparison of beat tracking performance. SDP is the de-
fault real-time model. SDP+tempo has an initial tempo. SDP+beat
has an initial tempo and first beat specified. KEA (NC) and DP
(NC) are existing non-causal algorithms.

Beats are considered accurate if they fall within a ±17.5% win-
dow around each annotated beat location. Tracking at the correct
metrical level means the tempo of the beats and annotations are
the same, and the beats are in-phase. The allowed metrical levels
permit tracking at twice and half the annotated metrical level and
tapping on the off-beat at the correct tempo. For further details see
[7].

We evaluate three variants of our beat tracking algorithm: the
first, SDP refers to the default initialisation, where an arbitrary first
beat is specified; for this we select a time instant 1.5 seconds af-
ter the start of each test excerpt. The second variant, SDP+tempo
still has an arbitrary beat initialisation, but is given the annotated
tempo. The third variant, SDP+beat is given the first annotated
beat location and the annotated tempo. A summary of results is
given in Table 1, where a comparison against the Klapuri et al
(KEA) [9] and Davies and Plumbley (DP) [7] non-causal algo-
rithms is also provided.

The results in Table 1 indicate that our real-time algorithm
(SDP) is competitive with state of the art non-causal methods, even
though our approach must predict beats solely from past data; a
constraint not applied to the non-causal methods. Furthermore,
when given the initialisation of a first beat and tempo (similar to
a “count-in” in musical performance) our beat tracker is able to
exceed the state of the art under the strictest evaluation requirement
(CMLc). We consider this level of accuracy very encouraging for
potential future use in interactive musical performance.

Moving beyond these isolated accuracy values, we also ad-
dress the robustness of our algorithm in terms of its parameters.
We re-evaluate the SDP approach under each continuity-based cri-
terion for 0 ≤ α ≤ 1 in (2) and for 1 ≤ η ≤ 10 in (3). The
resulting “accuracy surfaces” are shown in Figure 5.

If α=1, then beat tracking performance under all evaluation
measures is zero. This is consistent with (2) where setting α=1
means that no information from the onset detection function is
ever incorporated into the cumulative score, and hence no beat lo-
cations are predicted. The relatively flat nature of the CMLt and
AMLt in comparison to the slope in the surfaces of CMLc and
AMLc suggests that parameter choices can adversely affect the
overall accuracy when continuity is required; which for real-time
performance is important. By inspection the variation in α leads
to greater changes in performance, therefore we believe this pa-
rameter to be more influential than η. In future work we intend to
explore the adaptive modification of these parameters in real-time,
which we consider a potential method for improving accuracy.
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Figure 5: Beat tracking accuracy surfaces for SDP approach.
Clockwise from top left:CMLc,CMLt,AMLc,AMLt.

4.2. Evaluating Beat-Synchronous Analysis Techniques

We conducted an informal analysis experiment using all three beat-
synchronous methods by performing a beat-synchronous chord
analysis of a polyphonic guitar performance. The algorithm at-
tempted to label the chord at each beat as one of the 24 major and
minor triads. As can be seen in Figure 6, the resulting performance
was identical for all three methods. All methods correctly labelled
95.2% of the 105 beats correctly. We compared this with a frame
by frame analysis of the same signal using the same chord recog-
nition algorithm. The result was that 91.6% of the 1037 frames
were correctly labelled. These preliminary results of the evalua-
tion of the beat-synchronous analysis methods indicate that it im-
proves performance over a frame-by-frame approach, however it
is accepted that the results will vary depending upon the style of
music. The similarity in performance of the three methods indi-
cate that the choice of the preferred method should be based upon
computational complexity, for which method 2 is the cheapest.

It would be desirable to perform a more thorough evaluation of
the beat-synchronous analysis technique, but the process of anno-
tating audio examples is difficult and time-consuming. We intend
to undertake a more rigorous evaluation with a focus on the real-
time aspects in our future work.

Some problems can occur with the compounding of errors
occurring in the beat tracker and subsequent analysis algorithms.
That is, if the beat tracker performs poorly then this can both ex-
acerbate and cause problems in the harmonic analysis algorithms.
For example, if the beat tracker is not calculating beats at the cor-
rect locations in the audio signal then this can lead to harmonic
content from before and after a harmonic change being incorpo-
rated into the same ‘beat’. This would make for poor performance
in the beat-synchronous chord analysis for example.
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Figure 6: The chord output of all three beat-synchronous methods is identical, indicating that there is little to distinguish the techniques
in terms of their influence on the analysis. The frame-by-frame approach shows a higher percentage of errors than the beat-synchronous
methods. The chord labels are 0-11 for C minor -> B minor and 12-23 for C Major -> B Major. The solid line represents the ground truth
and the dotted line is the beat-synchronous analysis.

5. CONCLUSIONS

In this paper we have addressed the topic of beat synchronous anal-
ysis towards a real-time interactive musical system. As part of our
approach we have formulated a new real-time beat tracking model
and have shown its performance to be competitive with state of
the art offline systems. Furthermore we have illustrated the po-
tential for beat synchronous analysis to outperform frame-based
processing for real-time chord detection. Within our future work
we plan to conduct a large scale evaluation of real-time beat syn-
chronous analysis methods addressing both objective/subjective
accuracy and computational complexity.
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