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ABSTRACT

We introduce a new technique for the blind localization of sev-
eral sound sources from two binaural signals. First, the binaural
signals are organized as two-dimensional data where each sound
source appears as a line. Second, the Hough transform is used to
recognize these lines. The slopes of the lines give the mixing co-
efficients and directions of arrival (azimuths). Two variants of our
technique are proposed, based on only one of the interaural level
or time differences, respectively. Although a rapid comparison to
a well-known localization method as well as promising results are
shown, they are clearly not exhaustive and this paper should rather
be regarded as a feasibility demonstration of the new technique.

1. INTRODUCTION

Sound source localization and separation is an active research topic
in the audio community. The blind approach, with no information
on the sound sources or the mixing process, is specially challeng-
ing. With this approach, one can only rely on perception, and a
classic strategy is to use binaural cues [1, 2, 3, 4, 5, 6].

The Degenerate Unmixing and Estimation Technique (DUET)
[1, 2] consists in building a 2-dimensional histogram from two in-
teraural cues: the interaural level difference (ILD) and the interau-
ral time difference (ITD). This 2D histogram can be regarded as an
image, where sound sources appear as local maxima of intensity.

This approach has many drawbacks, since these cues are not
independent and the time difference is estimated by the phase dif-
ference, which is ambiguous. The cues can be combined into a
more efficient localization algorithm [3, 4], and / or used in a sta-
tistical approach [5, 6] leading to Gaussian mixture models.

In early attempts for sound localization, the signals at the two
ears were used directly – instead of two binaural cues – to plot
simple geometric structures (e.g. ellipses) from which the spatial
information could be derived, at least in simple mixing situations.

In this paper, we show that it is possible to use these binau-
ral signals and cues to build images in which each sound source
appears as a line, even within a very general mixture model. The
problem is then to recognize the lines in these images. This can be
achieved by using the Hough transform [7], well known in image
analysis. Thus, we propose to combine the interaural signals and
cues to get the binaural data and Hough transforms to analyze their
distributions.

To our knowledge, this paper is the very first attempt of such
an “image + sound” combination. However, we must mention that
Richard O. Duda has worked in both research areas: Hough trans-
form for image analysis [8], and binaural sound analysis [9]. This
article has to be regarded as our early experiments with the binau-
ral Hough technique, and mainly as a demonstration of the feasi-
bility of this technique. Extensive tests and comparison with other

techniques, as well as the extension of the localization technique
to source separation, are part of our future research.

The remainder of this article is organized as follows. Section 2
presents a very general mixture model, convolutive and with addi-
tive noise, giving the way the different sound sources combine at
the two ears to form the binaural signals. Section 3 describes the
binaural model showing how interaural cues can be used to orga-
nize the binaural data in linear structures, one line per source. Sec-
tion 4 gives an overview of the Hough transform, and demonstrates
its ability to recognize lines and stripes in our context. Then Sec-
tion 5 shows how the combination of the binaural and Hough anal-
yses, in the cases of interaural level or time differences, can lead
to an interesting source localization technique. Finally, Section 6
reports our early experiments with this new localization technique
and Section 7 concludes by giving directions for further research.

2. MIXTURE MODEL

We first consider a very general – quite realistic – mixture model.

2.1. Temporal Domain

The binaural signals sC(t) arriving at the two ears (C being the
channel, L left or R right) are obtained by the addition of all the
contributions of the M sound sources with a Gaussian white noise
nC(t), each contribution vm,C(t) being the result of the convo-
lution (∗) of the m-th source signal sm(t) by the acoustic path
am,C(t) from the source to the ear. More precisely, we have:

sC =

MX
m=1

am,C ∗ sm| {z }
vm,C

+nC (C ∈ {L, R}). (1)

In the simple cases of a single sinusoid or a complex sound but
monophonic and with scalar mixing coefficients, it is well-known
that plotting sL as a function of sR gives remarkable geometric
shapes (see Figure 1). However, in the complex case of several
sinusoids or sources and general acoustic paths for the am,C coef-
ficients, the (sR, sL) plot is not tractable anymore.

2.2. Spectral Domain

Fortunately, a spectral representation can handle these cases (as
shown by Figures 2 and 3). More precisely, we switch to the
time-frequency plane by means of a short-time Fourier transform
(STFT), the mixing equations being now:

SC =

MX
m=1

Am,C · Sm| {z }
Vm,C

+NC (C ∈ {L, R}) (2)
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Figure 1: Plotting (sR, sL) in the simple case of one (M = 1)
sinusoid s1(t). Without phase difference among the mixing coef-
ficients (left), the plot appears as a line which slope is the ratio
between the left and right coefficients (here 1/2). With an addi-
tional phase difference between the mixing coefficients (right), the
plot appears as an ellipse: one axis is again directed by the am-
plitude of the ratio between the the coefficients, but the other is a
function of the angle of this ratio (here π/4 rad).

where S(t, f) denotes the STFT of s(t), and the convolution of
Equation (1) is now a simple multiplication among spectra. Then,
we take advantage of two properties of the spectral representation.

2.2.1. Orthogonality Assumption

First, the classic orthogonality assumption holds for most signals.
More precisely, at a given point (t, f) of the time-frequency plane,
there is a dominant source m(t, f), the others being negligible,
thus:

∀t, ∀f, SC(t, f) ≈ Am(t,f),C · Sm(t,f)| {z }
Vm(t,f),C

+NC(t, f). (3)

2.2.2. Effect of Noise

Second, the additive noise and the sources are statistically inde-
pendent, and thus the variances of the (zero-mean) signals sum up:

∀t,
X

f

|SC(t, f)|2 =
X

f

|Vm,C(t, f)|2 +
X

f

|NC(t, f)|2. (4)

Moreover, in order to neglect the effect of the noise, we choose
to consider only the local maxima of the magnitude spectra |SC |,
where the condition |Vm,C |2 >> |NC |2 should hold (especially
for low noise levels), and thus we have |SC |2 ≈ |Vm,C |2.

3. BINAURAL MODEL

Let us now investigate the relation between left and right signals:

Vm,L(t, f) = Km(f) · Vm,R(t, f) (5)
where Km = Am,L/Am,R. (6)

Before using perceptive considerations, with a model of the human
head, let us first consider a simplified model, suitable for many
signals produced by the audio industry.

3.1. Simple Panoramic Case

When using a mixing console, a gain and a delay are often applied
to each channel of the mix, to produce an artificial spatialization.
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Figure 4: Frequency-dependent scaling factors: α (top) and β
(bottom).

3.1.1. Level Difference (Gain)

Then |Km| is the mixing gain, the points (x, y) =
`
|SR|2, |SL|2

´
(weighted by their power |S|2 = |SL|2 + |SR|2) form lines of
slopes |Km|2, as shown in Figure 2.

3.1.2. Time Difference (Delay)

Also ∠Km is a consequence of the time delay ∆m, and more pre-
cisely ∠Km = 2πf∆m, thus the points (x, y) = (f, ∠(SL/SR))
form parallel stripes of slope 2π∆m, as shown in Figure 2. The
stripes are due to the fact that the phase is measured modulo 2π.

3.2. Realistic Binaural Case

For natural signals, such as the ones recorded at the ears, Km is
not set by some mixing device, but rather a consequence of the
propagation to the ears of the sound of the m-th source, positioned
at some azimuth Θm.

3.2.1. Interaural Level Difference (ILD)

After Viste [3, 4], we have verified in [5] that

|Km(f)| = 10ILD(Θm,f)/20 (7)
where ILD(Θ, f) = α(f) sin(Θ) (8)

and α is a scaling factor (see Figure 4) learned from the CIPIC
database [9] (see [5, 10] for details). As a consequence, the points

(x, y) =
“
|SR|20/α, |SL|20/α

”
(9)

(again weighted by their power, this time estimated thanks to |S|2 =
|SL · SR| as indicated in [10]) should form a line of slope

am = 10sin(Θm) (10)

which is a function of the azimuth Θm only. This is verified in
practice, as shown in Figure 3.
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Figure 2: Accumulation of the power of the (x, y) points (indicated with small crossed dots) according to (x, y) =
`
|SR|2, |SL|2

´
(left)

and (x, y) = (f, ∠(SL/SR)) (right), in the cases of a (monophonic) white noise mixed with a gain of 1/2 and a delay of −20 samples
(at Fs = 44.1kHz) (top) and 3 sources – singing voice with gain 1/2 and delay −20 samples, xylophone with gain 1 and delay 0, and
trumpet with gain 2 and delay +20 samples (bottom). One can clearly see one line per source for the gain case (left). For the delay
case (right), one can notice series of parallel stripes, with a different slope for each source: negative, null (horizontal line), or positive.
Solid lines indicate the slopes detected by the proposed localization method.

Figure 3: Accumulation of the power of the (x, y) points (indicated with small crossed dots) according to Equations (9) (left) and
(13) (right), in the cases of a (monophonic) white noise at azimuth −30◦ (top) and 3 sources – singing voice at −45◦, xylo-
phone at 0◦, and trumpet at +45◦ (bottom). One can clearly see one line per source for the ILD case (left). For the ITD case
(right), one can notice series of parallel stripes, with a different slope for each source: negative, null (almost horizontal line),
or positive. The scaling of the vertical axis (which range is 2π) is a consequence of the scaling factor β in Equation (13).
Solid lines indicate the slopes detected by the proposed localization method.
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Figure 5: Image space (left) and parameter space (right): Two
representations of straight lines from their Cartesian equations.
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Figure 6: The set of all the lines traversing one point (left) is rep-
resented by a unique line in the parameter space (right).

3.2.2. Interaural Time Difference (ITD)

We have also shown in [10] that

∠Km(f) ≡ 2π ITD(Θm, f) · f mod 2π (11)
where ITD(Θ, f) = β(f) R sin(Θ)/c (12)

and R = 7.25cm is the average head radius, c = 335m·s−1 is the
sound celerity, and β is a scaling factor (see Figure 4) learned from
the CIPIC database (see [9, 10]). As a consequence, the points

(x, y) =
“
f, ∠(SL/SR)1/β

”
(13)

should form parallel stripes of common slope

am = 2π R sin(Θm)/c (14)

which is again a function of the azimuth Θm only. This is verified
in practice, as shown in Figure 3.

We have also verified that panoramic signals generated with
the simplified mixing process (Section 3.1) exhibits linear struc-
tures when analyzed with the general binaural model (Section 3.2).

4. HOUGH TRANSFORM

The Hough transform (HT) is an image analysis tool for the recog-
nition of predefined shapes in an image (see for example [7] for
an overview). We present here its use for the recognition of linear
structures: straight lines (ILD case) and parallel stripes (ITD case).

4.1. Cartesian Version

As a preliminary, we explain how the HT can be used to recog-
nize a line given by its Cartesian equation y = ax + b. Such a
line can be represented by one point (a, b) in the parameter space
which axes correspond respectively to the line slope a and to the
y-intercept b. See Figure 5 for an illustration.

A point (x, y) in the image space can be represented by the
line b = −ax + y in the parameter space. In other words, a point
is described by the set of all the lines passing through it. This is
illustrated in Figure 6.
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Figure 7: Polar representation of a straight line in image space
(left) and in parameter space (right).

x

y

-2.5

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

 2.5

 0  1  2  3  4  5  6

r

theta

P1

P2

-sin(t)
cos(t)

2*cos(t) + sin(t)

Figure 8: Example of image space (three collinear points – left)
versus parameter space (three sinusoids – right) for the polar rep-
resentation.

The main idea of the HT is that each image point votes for all
the lines passing through it. A line is recognized if it gathers a sig-
nificant number of votes. In practice, the Cartesian representation
is not suitable (the distribution of the votes is hardly tractable, in
particular vertical lines cannot be recognized) and a polar repre-
sentation is used instead.

4.2. Polar Version

A straight line L is now given by the polar equation r = x cos(θ)+
y sin(θ). Let us denote by Lorth the perpendicular to L passing
through the origin. The angle θ is the angle from the x-axis to
Lorth. The value r is the distance between L and the origin. These
definitions are illustrated in Figure 7.

The set of all the lines traversing a point (x, y) is represented
by the sinusoid

r = x cos(θ) + y sin(θ) (15)

in the parameter space. In practice, we efficiently generate the
sinusoid using one cosine function, since

x cos(θ) + y sin(θ) = a cos(θ + φ) (16)
where a = |z|, φ = ∠z, z = x − iy

that can be computed using incremental methods. In the example
of Figure 8, the three collinear points (0,−1), (1, 0) and (2, 1)
are respectively represented by the sinusoids r = − sin(θ), r =
cos(θ) and r = 2 cos(θ) + sin(θ). The three curves intersect at
points P1 = (θ = 3π/4, r = −

√
2/2) and P2 = (θ = 7π/4, r =√

2/2).
Remark that P1 and P2 correspond to the same line of Carte-

sian equation y = x − 1. In fact, when considering both positive
and negative values for r, a range of π rad is sufficient for θ to
avoid redundancy in the transform (indeed, considering θ + π in-
stead of θ in Equation (15) is equivalent to considering θ but with
−r instead of r). We will use the [−π/2, +π/2] range.
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For computation, the parameter space is digitized as a numeric
matrix with θ in row and r in column. For each considered point in
the image space, its sinusoid is traced on the matrix by increment-
ing each encountered cell. In practice, to allow for some errors and
compensate for the discrete nature of the Hough matrix, we accu-
mulate a Gaussian distribution and thus the neighboring cells are
affected as well. When all the points are processed (all the “votes”
are taken into account), the maxima in the accumulator matrix give
the most salient straight lines in the image.

From the (r, θ) coordinates of these maxima, one can recover
the slope a and y-intersect b of the lines since

a = −1/ tan(θ) and b = r/ sin(θ). (17)

4.3. Line Recognition (1D Transform)

When using ILDs (see Figures 11 and 14), we are interested in
recognizing lines passing through the origin of the image, that is
with r = 0. Each (x, y) point contributes to the transform at

θ = − arctan(x/y) (18)

and thus designing an efficient implementation of this unidimen-
sional transform (function of θ only) is easy. Although θ ranges
from −π/2 to +π/2, only the first half of the range is useful,
since it corresponds to the positive slopes.

4.4. Stripes Recognition (2D Transform)

When dealing with ITDs (see Figures 12 and 15), then the r dimen-
sion is useful. We are again interested in recognizing a line passing
through the origin, but since this line is produced by a wrapped
phase it is in fact a series of parallel stripes. These stripes are
uniformly spaced, and cause in the full (two-dimensional) Hough
transform, at the corresponding θ, a periodicity in r with a period

∆r = 2π| sin(θ)| (19)

that can be observed in Figures 9, 12, and 15. As seen on these
figures, another way of observing this periodicity is to consider
the Fourier transform (FT) of each column (θ dimension) of the
Hough transform (HT). The local maxima of the combined HT/FT
transform should be located at the θ corresponding to the sound
sources. This is verified in practice, at least in monophonic cases.

5. SOURCE LOCALIZATION

We now present several localization techniques: a classic tech-
nique based on a power histogram, and the new proposed method
using the Hough transform. In each case, either the interaural level
differences (ILDs) or the interaural time differences (ITDs) can
be used, leading to two sub-techniques. Also, the new approach
works for panoramic and binaural mixes (see Section 3).

5.1. ILD-Based Localization

One can estimate the positions of the sources using only the ILDs.
The problem with the ILDs is that they are quite dispersed, and
cause a bias towards the extreme azimuths. Moreover, they are
problematic at low frequencies, and hardly tractable in practice
when dealing with reverberant conditions [11].
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Figure 9: The Hough transform for the recognition of linear struc-
tures: straight lines (left) or parallel stripes (right). In the first
case (left), the origin of the image (top) is at its bottom-left corner.
Since the line passes though this origin, the 2D Hough transform
(middle) exhibits a maximum for r = 0 (center of the vertical axis
of the HT image) at the θ (horizontal axis of the HT image) corre-
sponding to the slope of the line. Then the 1D version of the Hough
transform (bottom) clearly shows this maximum at the same value
of θ. In the second case (right), the origin of the image (top) is still
at the left of the horizontal axis (frequency), but now at the center
of the vertical axis (phase). The Hough transform (middle) exhibits
a series of local maxima (one per line segment), in a r-periodical
way for the θ corresponding to the slope of the lines. Finally, the
Fourier transform (bottom) for each θ shows a maximum at the
same abscissa.
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5.1.1. Classic Analysis

The existing approach [4, 5] consists in accumulating the power
of each time-frequency point (t, f) at the corresponding azimuth
Θ(t, f) in some histogram. First, the ILD is estimated with

ˆILD(t, f) = 20 log10

˛̨̨̨
SL

SR
(t, f)

˛̨̨̨
(20)

then Θ is obtained thanks to the inverse of the model Equation (8):

ΘL(t, f) = arcsin

„
ˆILD(t, f)

α(f)

«
. (21)

This way, a power histogram is built and its local maxima should
correspond to the directions of arrival of the sound sources. An
example with 3 sources is illustrated in Figure 10.

5.1.2. Hough Analysis

The proposed approach consists in first building the 1D Hough
transform (see Section 4.3) of the (x, y) points given by Equa-
tion (9), then searching for the local maxima in this transform.
As shown in Figures 11 and 14, these maxima are located at the
θm corresponding to the slopes am (see Equation (17)) of the lin-
ear distributions formed by the points, and from these slopes it is
possible to find in turn the azimuths Θm of the sound sources by
inverting Equation (10).

Remark that the Hough transform is particularly well-suited
here, since it gathers the information from independent data points,
such as the spectral atoms of the STFT, also possibly coming from
different sound sources.

5.2. ITD-Based Localization

The ITDs are more accurate, and more resistant to reverberation.
The problem is that they are ambiguous, because they are derived
from the interaural phase difference, measured modulo 2π.

5.2.1. Classic Analysis

The existing approach [4, 10] consists again in accumulating in
some histogram the power of each time-frequency point (t, f) at
the corresponding azimuth Θ(t, f). This time, the ILD and ITD in-
formations are combined to yield a better azimuth estimate. First,
the ILD is estimated using Equation (20). Second, the ITD infor-
mation is estimated with

ˆITDp(t, f) =
1

2πf
∠

„
SL

SR
(t, f)

«
+ 2πp. (22)

The coefficient p highlights the fact that the phase is determined
up to a modulo 2π factor. In fact, the phase becomes ambiguous
above 1500Hz, where the wavelength is shorter than the diameter
of the head. To obtain an estimation of the azimuth candidate for
each p, we invert Equation (12):

ΘT,p(t, f) = arcsin

„
c · ˆITDp(t, f)

R · β(f)

«
. (23)

The ΘL(t, f) estimates are more dispersed, but never ambigu-
ous, so they are exploited to find the right modulo coefficient p
that unwraps the phase. Then the ΘT,p(t, f) that is nearest to

ΘL(t, f) is validated as the final Θ estimation for the considered
time-frequency point, since it exhibits a smaller deviation:

Θ(t, f) = ΘT,q(t, f) (24)

where q = argminp |ΘL(t, f)−ΘT,p(t, f)| .
Practically, the choice of p can be efficiently limited among two
values (dpre, bprc), where

pr =

„
f · ITD(ΘL, f)− 1

2π
∠

SL(t, f)

SR(t, f)

«
. (25)

This way, a more accurate power histogram is built and its local
maxima should correspond to the directions of arrival of the sound
sources. An example with 3 sources is illustrated on Figure 13.

5.2.2. Hough Analysis

Here, we propose a new approach using only the ITD information
(whereas the classic method requires also the ILD information).
The Hough transform (see Section 4.4) is performed on the (x, y)
points obtained thanks to Equation (13), then a Fourier transform is
computed in turn and its local maxima should correspond to sound
sources. From the angle θ of each maximum, a slope a is computed
using Equation (17). In the panoramic case, the time delay is given
by ∆m = am/(Fs/2), where Fs denotes the sampling frequency.
In the binaural case, the azimuth Θm is estimated from the slope
am by inverting Equation (14).

Remark that the Fourier transform requires a certain number of
periodicities. For extreme azimuths, there can be up to 20 of them
(because the ITD is then close to 1ms, and see Equation (11)). But
they may be insufficient with azimuth close to 0. If needed, this
number can be artificially increased by elevating the SL/SR ratio
to the power of some positive integer P . It increases the wrap-
ping effect of the phase ratio ∠(SL/SR), multiplies the number of
stripes by P , but also their slope by the same factor.

6. EXPERIMENTS

In our early experiments, we considered four tests signals (mono-
phonic or polyphonic examples obtained with either panoramic or
binaural mixing processes), then we estimated the mixing param-
eters / azimuths using either the ILD or the ITD information.

6.1. Test Signals

For the monophonic cases (M = 1), we use a Gaussian white
noise (broadband signal). For the polyphonic cases, we consider
M = 3 sound sources: the singing voice of Suzanne Vega (the fa-
mous excerpt from “Tom’s Dinner”) at the right, a xylophone in the
middle, and a trumpet at the left. All sound sources are sampled at
Fs = 44.1kHz, zero-mean, and normalized to the same duration
and level prior to the mixing process. In the polyphonic cases, we
use additive noises nC of level −20dB (see Equation (1)). The
mixing parameters or locations of the sources are indicated in Ta-
bles 1 or 2, respectively. For the binaural case, the sources are
spatialized using the head-related impulses responses (HRIRs) of
the KEMAR manikin [12], found in the CIPIC database [9].

6.2. Experimental Results

These test signals were analyzed using the classic and proposed
methods, with or without the ITD information. For the STFT, we
used frames of N = 2048 samples and the Hann window.
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sound source amplification gain time delay in samples
white noise 1/2 (0.51) -20 (-21)

singing voice 1/2 (0.51) -20 (N/A)
xylophone 1 (1.00) 0 (N/A)

trumpet 2 (1.97) +20 (+21)

Table 1: Mixing coefficients (and their estimations in parentheses,
if available) for the panoramic case.

sound source azimuth in degrees
white noise -30 (-40.59 [-37], -23.32 [-24])

singing voice -45 (-63.96 [-52], -50.00 [-36])
xylophone 0 (-4.72 [-2], N/A [+3])

trumpet +45 (+53.16 [+65], N/A [+45])

Table 2: Source locations (and their estimations with ILDs, then
with ITDs) for the binaural case. [The reference estimations using
the classic method are indicated in square brackets.]

For the panoramic mixes, the results are shown in Figures 2,
11, and 12, and summarized in Table 1. In all cases the linear
structures appear in the data, the Hough transform is able to recog-
nize them, and the mixing coefficients are estimated with a great
accuracy. The only problem is with the estimation of multiple time
delays in the polyphonic case, since the Fourier transform of the
Hough transform is too messy (see Figure 12) and the estimation is
done only for one source – corresponding to the global maximum.

For the binaural mixes, the results are shown in Figures 10 and
13 (classic method), Figures 3, 14, and 15 (proposed method), and
summarized in Table 2. Again, in all cases the linear structures
appear in the data, the Hough transform is able to recognize them,
and the directions of arrival are estimated with a sufficient accu-
racy. As mentioned in Section 5, the ILD-based method overesti-
mates the azimuths, whereas the ITD-based method shows a better
accuracy. The proposed method could even be a serious challenger
for the state-of-the-art method (see the results in bold in Table 2).
Unfortunately, the Fourier transform of the Hough transform is
again messy (see Figure 15) and thus for now the estimation is
done only for one source – again using the global maximum.

7. CONCLUSION AND FUTURE WORK

We have in fact introduced two new techniques for binaural source
localization, using the Hough transform. The first one takes ad-
vantage of the ILD information only, uses a 1D Hough transform,
and is roughly equivalent to the existing histogram-based method
– with the same drawbacks (overestimation of the azimuths, poor
resistance to reverberation). The second one takes advantage of
the ITD information only, uses a 2D Hough transform, and shows a
lower estimation bias. Unlike the existing histogram-based method,
the ILD information is not used anymore, which could be a great
advantage especially in reverberant conditions. Unfortunately, the
interpretation of the Hough transform is more complicated and for
now we localize only the dominant source. To be able to local-
ize all the sources, we need to compute the accumulation of the
votes for the multiples of ∆r (see Section 4.4). For now this is
done using a Fourier transform. However, we need a greater reso-
lution for low values of θ. Moreover, computing first the (discrete)
Hough transform then the (discrete) Fourier transform is not op-
timal. For these reasons, we are now working on the design of a
specific transform.
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Figure 10: Power histogram obtained using only the ILD infor-
mation, for a mix of 3 sources located at azimuths −45◦, 0◦, and
+45◦. The central source is clearly visible. However, the energy of
the other sources is spread towards the extreme azimuths (±90◦),
where spurious peaks appear. The azimuth estimation gets biased.
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Figure 11: 1D Hough transforms obtained for panoramic signals
made of 1 (top) or 3 (bottom) source(s) – see Sections 5.1 and 6
for details.

Figure 12: 2D Hough transforms (top) and associated Fourier
transforms (bottom), obtained for panoramic signals made of 1
(left) or 3 (right) source(s) – see Sections 5.2 and 6 for details.
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Figure 13: Power histogram obtained using the full ILD+ITD in-
formation, for a mix of 3 sources located at azimuths −45◦, 0◦,
and +45◦. The sources are clearly visible. However, spurious
peaks again show up at extreme azimuths (±90◦). These peaks
are consequences of errors of the ILD model mostly at low fre-
quencies.
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Figure 14: 1D Hough transforms obtained for binaural signals
made of 1 (top) or 3 (bottom) source(s) – see Sections 5.1 and 6
for details.

Figure 15: 2D Hough transforms (top) and associated Fourier
transforms (bottom), obtained for binaural signals made of 1 (left)
or 3 (right) source(s) – see Sections 5.2 and 6 for details.
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