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ABSTRACT

This paper focuses on automatic extraction of acoustic chord se-

quences from a piece of music. Firstly, the evaluation of a set of

different windowing methods for Discrete Fourier Transform is in-

vestigated in terms of their efficiency. Then, a new tuning solution

is introduced, based on a method developed in the past for phase

vocoder. Pitch class profile vectors, that represent harmonic in-

formation, are extracted from the given audio signal. The resulting

chord sequence is obtained by running a Viterbi decoder on trained

hidden Markov models. We performed several experiments using

the proposed technique. Results obtained on 175 manually-labeled

songs provided an accuracy that is comparable to the state of the

art.

1. INTRODUCTION

In the past few decades, since scientific and technological progress

has allowed us to store a great deal of multimedia information, a

keen interest in the chord sequence extraction from a piece of mu-

sic has been emerging. Automatic analysis of digital music sig-

nals has attracted attention of many researchers, establishing and

evolving Music Information Retrieval (MIR) community. Chord

recognition is a part of the large research field of computer au-

dition which deals with all kinds of information extraction from

audio signals. Harmonic structure can be described in terms of

chord sequences. A chord can be introduced as a number of notes

sounding simultaneously, or in a certain order between two time

instants, known as chord boundaries. Therefore the task of chord

transcription includes chord type classification and precise bound-

ary detection.

Chromagram has been the most successfully used feature for

the chord recognition task. It consists of a sequence of chroma

vectors. Each chroma vector, also called Pitch Class Profile (PCP),

describes harmonic content of a given frame. Each component of

the vector represents the energy of one pitch class. Since a chord

consists of a number of tones and can be uniquely determined by

their positions, chroma vector can be effectively used for the chord

representation.

Fujishima was the first one who used the chroma feature in the

music computing tasks [1]. He proposed a real-time chord recogni-

tion system, describing extraction of 12-dimensional chroma vec-

tors from the Discrete Fourier Transform (DFT) of the audio signal

and introducing numerical pattern matching method using built-in

chord-type templates to determine the most likely root and chord

type. His system showed promising results on pieces of music

containing a single instrument.

Sheh and Ellis proposed a statistical learning method for chord

recognition [2]. The Expectation-Maximization (EM) algorithm

was used to train hidden Markov models, meanwhile chords were

treated as hidden states. Their approach involves statistical infor-

mation about chord progressions – state transitions are identical to

chord transitions.

Lee et al. [3] described a chord recognition system that used

symbolic data, taken from MIDI1 files, to train hidden Markov

models. This allowed them to avoid a time consuming task of

human annotation of chord names and boundaries. The advantage

of their system is the possibility of concurrent estimation of key

and chord progression, which is achieved by means of building 24

key-dependent HMMs.

Papadopoulos and Peeters [4] presented a new method for

chord recognition, which simultaneously estimates chord progres-

sion and downbeats from an audio file. They paid a lot of atten-

tion to possible interaction of the metrical information and the har-

monic information of a piece of music.

On the stage of feature extraction for chord recognition and

key estimation of a piece of music a lot of attention has been paid

to tuning issues [5, 6, 7]. The necessity of tuning appears when

audio was recorded from instruments that were not properly tuned

in terms of semitone scale. They can be well-tuned relatively to

each other, but, for example, "A4" note is played not at conven-

tional 440 Hz but at 447Hz. This mis-tuning can lead to worse

feature extraction and as a result less efficient or incorrect classi-

fication. Several approaches to circumvent the problem have been

developed.

Harte and Sandler [5] suggested using 36 dimensional chroma

vectors. The frequency resolution in this case is one-third of a

semitone. After the peak-picking stage and computing a histogram

of chroma peaks over the entire piece of music they find mis-

tuning deviation. And prior to calculating 12-bin conventional

chromagram they accurately locate boundaries between semitones.

The resulting 12-bin semitone-quantized chromagram is then com-

pared with a set of predefined chord templates.

Peeters [7, 8] tested a set of candidate tunings, i.e. the quarter-

tone below and the quarter-tone above "A4" note. For each possi-

ble tuning the amount of energy in the spectrum is estimated. After

defining the global tuning center, the signal is resampled so that it

becomes tuned to 440Hz.

Mauch et al. [6] used a quite similar approach: after com-

puting 36-bin chromagram they pick one of three possible sets of

12-bin chromagram, relying on the maximum energy inside can-

didate bins (e. g. {1, 4, 7... 34 }).

The above-mentioned tuning approaches are similar in sense

that they all utilize the information taken just from energy spec-

trum. However, to apply a tuning technique one can start from dif-

1http://www.midi.org
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ferent energy spectrum representations, based, for instance, on dif-

ferent window type and size that are chosen. In order to perform a

more accurate and precise mis-tuning estimation the proposed pa-

per firstly investigates different possible windowing to apply DFT;

secondly, it introduces a tuning technique that concurrently analy-

ses magnitude and phase spectrum. The rest of the paper is orga-

nized as follows: section 2 describes the front-end processing and

the resulting feature extraction procedure. In section 3 the here

adopted HMM-based classification engine is briefly outlined. The

experimental results and conclusion are then given in section 4 and

section 5, respectively.

2. FRONT-END PROCESSING

2.1. Feature extraction

On the stage of front-end processing the signal is downsampled to

11025 Hz and converted to the frequency domain by a DFT using

a windowing function. We consider the range of frequencies be-

tween 100 Hz and 2 kHz, mainly because in this range the energy

of the harmonic frequencies is stronger than non-harmonic fre-

quencies of the semitones. We use a conventional 12-dimensional

Pitch Class Profile (PCP) vector as acoustic feature set, which rep-

resents the energies of the 12 semitone pitch classes. A sequence

of PCP vectors is known as chromagram. Chromagram is com-

puted in several steps. At first, energy spectrum is calculated using

DFT. Then the obtained spectrum is mapped to chroma domain, as

shown in (1).

n(fk) = 12log2

(

fk

fref

)

+69, n ∈ℜ+
(1)

where fref denotes the reference frequency of "A4" tone,

while fk and n are the frequencies of Fourier transform and the

semitone bin scale index, respectively. In order to reduce tran-

sients and noise, similarly to Peeters [8] and Mauch et al. [6],

smoothing over time using median filtering is applied. After filter-

ing semitone bins are mapped to pitch classes, as shown in (2)

c(n) = mod(n, 12) (2)

As a result, a sequence of 12-dimensional PCP vectors is ob-

tained.

2.2. Tuning

In order to circumvent the problem of audio recording mis-tuning,

a technique that was formerly developed for phase vocoder [9] is

here used. The proposed method allows for very precise and ac-

curate frequency estimation of each sinusoid by performing the

analysis of the degree of phase change. The block diagram of

the proposed estimation scheme is depicted in figure 1. The ba-

sic principle is to compute a second Fourier transform of the same

signal, windowed by the same function shifted by D samples. Let

x[n] be a sequence of samples of the analyzed signal that contains

some fundamental and harmonic components. Discrete Fourier

Transform (DFT) is performed on the signal weighted by window

function w[n] as follows:

Xw[t0, k] =
∑N−1

n=0
w[n]x[n + t0]e

−2πjnk/N
(3)

where k and N denote a bin number and the window size re-

spectively. A peak extraction algorithm is applied to the obtained

t
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Figure 1: Block diagram of precise frequency estimates
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Figure 2: Magnitude and Phase-change spectrum

magnitude spectrum, which results in a list of possible candidates.

The main problem of accurate frequency detection based just on

the magnitude information is that the main lobe of low frequency

harmonics is wider than the spectral resolution (and sometimes

than a semitone distance). In such cases the energy of a harmonic

component is distributed between adjacent bins, which represents

an obstacle in the way of an accurate frequency estimation.

To cope with the above-mentioned problem, a second DFT is

applied on the signal weighted by the same window, shifted by D

samples, from which the difference of the two given phases divided

by the time interval of D samples is calculated as follows:

ω(D, N, t0) =
arg Xw[t0 + D, k] − arg Xw[t0, k]

D
(4)

The time interval D is chosen so that the phase change for the

maximum frequency is less than 2π. Thus we can ignore the

phase-wrapping effect. Analyzing the obtained spectra in terms

of phase-change allows for determining frequencies of harmonic

components in a more accurate way, since all the adjacent bins

containing the energy of a single harmonic have the same degree

of phase change (see fig. 2).

Now information obtained from peak-search algorithm is

combined with phase-change spectrum in order to provide the fi-
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Figure 3: Connection schema of trained models for decoding.

nal estimation. Positions of all possible candidates are checked in

terms of the flatness of the corresponding frequency intervals in

the phase-change spectrum.

A set of detected harmonics is compared to the table of nomi-

nal frequencies. Mean value and standard deviation of closest log-

distance (based on a semitone metric) to the nearest nominal fre-

quency are calculated in order to determine the mis-tuning and the

consequent consistency of the estimate. Once this procedure has

been applied, a new value is assigned to the reference frequency,

which is subsequently used for feature extraction. For example,

frequency of "A4" is set to 443Hz and frequencies of all the other

notes are determined according to equally tempered intervals.

3. HIDDEN MARKOV MODELS

In this work a quite standard application of hidden Markov mod-

els (HMM) is addressed, for which a chroma vector represents the

basic feature vector to be observed in order to build and use re-

lated acoustic models. As opposed to many existing approaches

[4, 2, 3], where a chord is represented as a hidden state in one

ergodic HMM, a separate model is here created for each chord.

Observation vector probabilities in each state can be characterized

by a number of Gaussians in 12 dimensions, described by a mean

vector and a covariance matrix. It is assumed that feature vec-

tor components are uncorrelated one each other, so the covariance

matrix has diagonal form. For each observation we use a mix-

ture of 512 12-dimensional Gaussians. Songs from the training

set are segmented according to the ground-truth labels so that each

segment represents one chord. Chromagrams extracted from these

segments are used for training, which is based on the application of

the Baum-Welch algorithm. Before running the recognition task,

feature vectors are extracted from the test data. There is no pre-

liminary segmentation as done on the training data for which a

chroma vector sequence is extracted for each chord segment; only

one chromagram is obtained for the whole test song. The trained

chord HMMs are connected as shown in figure 3. The Viterbi

algorithm is then applied to the test data by using the resulting

connected trained model in order to estimate the most likely chord

sequence for each song. The full schema of chord recognition sys-

tem is depicted in figure 4.

4. EXPERIMENTS

In order to evaluate the proposed system we used songs from 12

Beatles albums; the total duration of the collection is 7 hours 44

minutes. Database annotations, kindly provided by C. A. Harte

[10], were used as ground-truth. We consider 24 different chord
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Figure 4: Chord recognition system.

types (major and minor for each of 12 roots) that can be distin-

guished by the system, while 7th, min7, maj7, minmaj7, min6,

maj6, 9, maj9, min9 chords are merged to their root triads. Sus-

pended augmented and diminished chords are discarded from the

evaluation task, since the percentage of their duration results to be

2.71% out of the whole material. In order to prevent from lack

of training data (some chord types can appear only few times in

the training corpus) only two models are trained: C-major and

C-minor. For this purpose, all chroma vectors obtained from la-

beled segments are mapped to the C-root using circular permuta-

tion. Then, mean vectors and covariance matrices are estimated for

the two models. All the other models can be obtained by a circular

permutation procedure. For evaluation, a recognition rate measure

similar to the "recall" one was used, which in the given case corre-

sponds to the total duration of correctly classified chords divided

by the total duration of chords, as reported in the following:

rec.rate =
|recognized_chords| ∩ |ground − truth_chords|

|ground − truth_chords|
(5)

The evaluation is performed frame by frame. As done under the

MIREX 2008 competition2, the "precision" measure is not used

since a contiguous sequence of chords is assumed, i.e. each time

unit features a chord label. Another important characteristic de-

noting the quality of the transcribed chord labels is the "fragmen-

tation" measure, which is defined as a relative number of chord

labels [6].

It is worth noting that varying the chord insertion penalty al-

lows for obtaining output labels with different degree of fragmen-

tation. The recognition accuracy as a function of insertion penalty

for Hamming window is displayed in figure 5. For each window

size, there is an optimal value of insertion penalty, which produces

labels with a fragmentation rate very close to the ground-truth.

In order to find the best windowing function, a set of tests

were carried out involving window lengths of 1024(92.8 ms),

2048(185.7 ms), 4096(371.5 ms), 8192(743.0 ms), for Blackman,

Hamming and Hanning window types (with 50% overlapping and

the optimal insertion penalty). The results are reported in table 1.

The highest performance (69.00 %) was achieved with Ham-

ming window of length 2048 samples, while other window types

showed results that are very close to this value. Window length of

2048 samples appeared to be a reasonable trade-off between the

2http://www.music-ir.org/mirex/2008/index.php/Main_Page
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Figure 5: Recognition rate as a function of insertion penalty.

Table 1: System performance obtained with different windowing

configurations.

1024 2048 4096 8192

Blackman 57.05 68.92 68.67 64.36

Hamming 60.24 69.00 67.91 64.18

Hanning 59.76 68.51 68.40 63.63

stationarity of the analysed frame of signal and frequency resolu-

tion. Taking the best configuration from the above-described ex-

periments (Hamming window of length 2048 samples) the system

performance was conducted by including the tuning procedure.

Different window delays D were explored in terms of recognition

rate. The results are given in the table 2. By increasing the delay

D, a very small increase in accuracy can be noticed, which can be

due to a different uncertainty in frequency that is obtained for the

given window length [11]. Besides this aspect, applying the tuning

procedure leads to a higher recognition rate. In order to estimate

Table 2: Recognition rate obtained using the tuning procedure

delay (samples) accuracy

1 71.37

2 71.42

4 71.41

10 71.52

12 70.60

15 69.06

the increase of performance introduced by the tuning procedure,

a 3-fold cross-validation was accomplished on the given data set.

The results are shown in table 3, which show that about 2.5% and

1% improvements are obtained on the reduced and on the whole

data sets, respectively.

5. CONCLUSION

In this paper, the results of a set of chord recognition experiments

have been outlined which are based on exploring different win-

dowing solutions as well as on the adoption of a tuning procedure

to make this task less dependent on possible instrument mis-tuning

Table 3: Evaluation results on the reduced and on the complete

test data set.

data
baseline with tuning

rec.rate frag. rec.rate frag.

fold1 69.00% 0.80 71.52% 0.81

fold1, fold2, fold3 67.47% 0.84 68.28% 0.84

effects. A new approach for tuning has been introduced, based on

concurrent analyzing magnitude and phase-change spectrum, that

can be used in high-accuracy feature extraction for chord recog-

nition and key identification systems. The experimental results

showed a very interesting performance in a 3-fold cross-validation

conducted on a commonly used database of Beatles songs, for

which an average recognition rate of 68.28% has been obtained.
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