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ABSTRACT

There is continuous research effort into the expansion and refine-
ment of transform techniques for audio signal processing needs,
yet the two-dimensional Fourier transform has seldom been ap-
plied to audio. This is probably because audio does not readily
allow the application of a 2D transform, unlike images for which
its use is common. A signal mapping is first required to obtain
a two-dimensional representation. However the 2D Fourier trans-
form opens up potential for new or improved analysis and trans-
formation of audio.

In this paper, raster scanning is used to provide a simple map-
ping between one- and two-dimensional representations. This al-
lows initial experimentation with the 2D Fourier transform, in which
the 2D spectrum can be observed. A straightforward method is
used to display the spectral data as a colour image.

The transform gives information on two frequency axes, one
in the typical audible frequency range and the other in the low fre-
quency rhythmic range. This representation can be used to more
easily observe rhythmic modulations in the signal. Some novel au-
dio transformations are presented, allowing manipulation of rhyth-
mic frequency content.

The techniques developed using the 2D Fourier transform al-
low interaction with audio in a new domain, both analytically and
creatively. This work shows how two common signal processing
mechanisms can be combined to exciting effect for audio applica-
tions.

1. INTRODUCTION

The conventional display of an audio signal is a waveform show-
ing amplitude against time. This can be referred to as the 1D time
domain representation, since the signal amplitude is shown only
against time, in one dimension. Similarly the spectrum of an au-
dio signal can be called 1D frequency domain representation since
it displays magnitude and/or phase data against frequency in one
dimension.

Another common audio display is the spectrogram which pres-
ents amplitude against time and frequency axes. Time-frequency
analysis is regularly used in audio processing. We view this as a
two dimensional audio representation, just as it is normal to refer
to an image as two-dimensional.

For an image there are two spatial dimensions, whereas audio
has one temporal dimension. Using an appropriate signal mapping
time can be split into two dimensions of different resolution, cre-
ating 2D time domain audio. A logical step from this form is to
convert to frequency dimenions via the 2D Fourier transform. This
2D frequency domain form yields potential for new insights into
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signal analysis and transformation, especially with regard to low-
frequency rhythmic modulations of the audible frequency signal
partials.

As a first step in exploring this frequency-frequency repre-
sentation the 2D discrete Fourier transform (DFT) has been com-
bined with raster scanning. This was chosen because it is a simple
method which allows meaningful visual comparisons of the 2D
time and frequency representations.

1.1. Matlab Tool

This work was focused on developing a software tool allowing
the 2D Fourier analysis and modification of rasterised audio. The
outcome is a useful and novel GUI-based application in Matlab,
which is intended for use by composers and researchers who are
interested in the potential applications of this processing. The Mat-
lab code and additional documentation are available at [1].

1.2. Raster Scanning

Raster scanning is a common technique for producing or recording
a display image in a line-by-line manner. It is used in communica-
tion and storage of two-dimensional data sets, a common example
being video monitors. The scanning path covers the whole im-
age area reading from left to right and progressing downwards as
shown in Figure 1.

Raster Image

Scan Line

Return Line

Legend

Figure 1: Raster Scanning Path (after [2])

Raster scanning has recently been applied to audio visualisa-
tion and image sonification [2]; it allows a simple one-to-one map-
ping between an audio sample and an image pixel.

Rasterisation is the process by which a 1D audio data array
is converted to a 2D matrix using raster scanning. The resulting
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representation can be displayed as a grayscale image called a ras-
togram, where the spatial dimensions represent time at two differ-
ent resolutions and sample amplitude gives the pixel intensity. The
temporal resolutions of the horizontal and vertical axes are given
by equations (1) and (2) respectively.

∆n = 1/fsa (1)
∆m = N/fsa (2)

N is the chosen image width and fsa is the audio sampling rate,
as seen in the horizontal axis of the rastogram, i.e. the reciprocal
of equation (1). Thus the sample rate in the vertical axis is given
by:

fsr = fsa/N (3)

The image will have height M where the length of the 1D signal
array l is:

(M − 1)N < l ≤MN (4)

If the 1D time domain waveform were displayed as an image with-
out prior rasterisation, it would be a single row of pixels with vary-
ing grayscale intensity. The rastogram can be considered as a 2D
time domain audio display; it can also be referred to as a time-
time representation in comparison to conventional time-frequency
analysis.

The inverse process can be used for image sonification or in
other words, converting from 2D time domain audio to the 1D
waveform. This is known as derasterisation. The forward pro-
cess and its inverse are trivial in digital signal processing, making
it useful as part of a 2D analysis-synthesis system.

1.3. Two-dimensional Discrete Fourier Transform

The DFT of a two-dimensional array of M × N samples can be
easily constructed by extending the one-dimensional DFT formula
[3]:

X [u, v] =

M−1X
m=0

N−1X
n=0

x [m,n] e−j2π( um
M

− vn
N ) (5)

for u = 0, 1, 2, . . . , (M − 1)
v = 0, 1, 2, . . . , (N − 1)

As can the inverse DFT:

x [m,n] =
1

MN

M−1X
u=0

N−1X
v=0

X [u, v] ej2π( um
M

− vn
N ) (6)

for m = 0, 1, 2, . . . , (M − 1)
n = 0, 1, 2, . . . , (N − 1)

The equations for the DFT and its inverse have the same relation-
ship in two dimensions as in one i.e. the inverse transform is the
complex conjugate of the forward transform, divided by the num-
ber of points in the transform. Here u and v are the frequency
variables and when considering audio, m and n are time variables
but with images they are spatial.

The two frequency domain analysis intervals relate inversely
to the size of the matrix. A larger 2D array gives better frequency
resolution:

∆v =
fsa
N

(7)

∆u =
fsr
M

(8)

The analysis frequencies for each axis can be obtained using equa-
tions (9) and (10). It is clear that with rasterised audio, frequencies
in the vertical axis fr are of a lower order than horizontal frequen-
cies fa since the vertical sample rate fsr is equal to the horizontal
resolution ∆v. Equation (11) shows that the 2D frequency domain
signal is periodic in each axis at the sample frequency of that axis.
This is caused by aliasing which occurs in discrete signals.

fa =
vfsa
N

(9)

fr =
ufsr
M

(10)

X[u, v] = X[u± pfsa, v ± qfsr] (11)

for u = 0, 1, 2, . . . , (N − 1) v = 0, 1, 2, . . . , (M − 1)
p = 0, 1, 2, . . . ,∞ q = 0, 1, 2, . . . ,∞

It is often advantageous to display the 2D spectral data with the DC
component (0 Hz in both axes) at the centre of the matrix. The data
is divided into quadrants, splitting at the Nyquist frequency fs/2
on each axis; fs is the sampling frequency for the axis concerned.
The data in the analysis frequency range fs/2 to fs is equal to that
in the range −fs/2 to 0 Hz due to the spectral periodicity. There-
fore, by shifting the quadrants to reflect this, an analysis range of
−fs/2 to fs/2 can be obtained in each axis, placing the DC com-
ponent in the centre.

This shifting process can also be performed in the time do-
main, prior to the DFT, multiplying the array by the Nyquist fre-
quency in each axis:

xshift [m,n] = x [m,n] (−1)m+n (12)

As with the 1D DFT, if the input x [m,n] is real then the Fourier
transform is conjugate symmetric so the magnitude spectrum is
symmetric, meaning that half of the data is redundant.

X[u, v] = X∗ [−u,−v] (13)
|X [u, v] | = |X [−u,−v] | (14)

The significance of the 2D spectrum in image processing is well
understood [4], each discrete value describes a spatial frequency
component. Its precise meaning in an audio context, where it de-
scribes temporal frequency, needs to be explored.

1.4. Short-Time Windowed Approach

The 2D DFT equation can be broken into two stages. First the
N -point DFT is performed on each of the M rows of the array,
so obtaining an intermediate M ×N array. The M -point DFT of
each of the N columns of this array is then taken to give the final
2D DFT array. The process can also be done in the opposite order,
columns then rows, and the same result will be obtained.

Rasterisation is comparable to the windowing stage of the short-
time Fourier transform, where a rectangular window is used with
no frame overlap. These frames are then arranged vertically to
produce the rastogram.

After the first stage DFT on the rastogram rows, each of the
N columns of the intermediate array give temporal variations in
magnitude and phase for a particular frequency u, with time in-
terval ∆m. Due to the symmetry of the real DFT only the first
N/2 frequencies are required, the information is duplicated in the
second half of the columns.
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The second stage is a DFT of the complex data in each of
these columns, giving the amount of variation at M different low-
frequencies v for each higher frequency u. The complex DFT is
not complex conjugate symmetric [4], so there is no duplication
and all of the rows are required.

The combined process of rasterisation and the 2D DFT is the
simplest implementation of a 2D analysis framework where a DFT
is taken for each frequency analysis point across all spectral frames
of a STFT. The result is a horizontal dimension with an audible
frequency range and resolution given by (8) and a vertical axis of
sub-sonic rhythmic frequency range with resolution given by (7).

This analysis framework was identified in [5], which is a rare
example of work describing 2D Fourier analysis of audio. For the
rasterised version with no overlap the relationship between ∆u
and ∆v is:

∆u = ∆v/N (15)

By using the rastogram as an intermediate step in this analysis
rather than a case with overlapping frames, there is a one-to-one
sample mapping into the 2D form. Through this method we can
more easily observe the relationship between 2D spectral data and
the time domain representation for audio.

It was decided to display all four quadrants of the spectrum
even though two are redundant. This gives the spectrum the same
dimensions as the image to aid direct comparison between them,
just as [6] compares the relationship between image features and
elements of the 2D spectrum.

2. 2D FOURIER ANALYSIS

An overview of the analysis and processing framework used in this
work is shown in Figure 2. The first stage is to perform appropriate
rasterisation and 2D Fourier analysis of audio signals and present
this information clearly. The raster settings are determined using
music information retrieval algorithms or are explicitly set by the
user. The signal is then rasterised to create the 2D time domain
representation, which can be viewed as a grayscale image. From
this rastogram the 2D frequency domain spectrum is obtained us-
ing the 2D FFT and displayed as a colour image.

2.1. Rastogram Width

A rastogram is often most useful when the image width corre-
sponds to a periodicity within the audio signal. Any slow variation
of this periodic element over time can then be observed more easily
than with a waveform display. In [2] the fundamental pitch period
is used to obtain a rastogram of audio signals. The period could
correspond to any periodic element such as a higher harmonic or
it could be larger, like the duration of a quarter-note in a rhythmic
audio signal, as shown in Figure 3a.

Correct assignment of the rastogram width is important during
2D Fourier analysis. The Fourier transform analyses the sub-sonic
frequency variation between the audible frequency bins of each
row. If the image dimensions correspond to a periodic element of
the signal then the Fourier data representation will be more infor-
mative, see section 2.5.

2.2. Timbral or Rhythmic Analysis

The analysis of audio signals is divided into two categories, tim-
bral and rhythmic, depending on what signal information is used

(a) Drum Pattern at 120 bpm with Width of a Quarter-Note
(22,050 pixels)

(b) C2 Piano Note with Width Set to Approximate the Funda-
mental Pitch Period (672 pixels)

Figure 3: Rastogram of Different Signal Types

to set the raster width. In timbral analysis mode the width is har-
monically related to the pitch whereas in rhythmic analysis mode
the width is related to the tempo of the signal.

This implementation uses music information retrieval tools
[7, 8] to semi-automate the choice of raster width. These algo-
rithms incorporate techniques like auto-correlation and onset de-
tection to ascertain the pitch and tempo, which can then be used to
determine suitable raster widths to divide the audio into rows that
contain a common periodic element. These techniques are a vital
part of the analysis because a signal periodicity must be synchro-
nised with the raster width in order to obtain a useful 2D spectrum.
For timbral mode, note onset information can be used to extract in-
dividual notes from a sequence for analysis.

Clearly both modes work on different scales, timbral analysis
is best for individual pitched notes and could be useful for ob-
serving the internal modulations of partials. Rhythmic analysis is
useful on longer signals with rhythmic patterns, where it can show
the rhythmic emphasis in the spectrum. In general the range of the
rhythmic frequency spectral axis extends higher in timbral anal-
ysis mode than rhythmic analysis mode since the image width is
lower. Figure 3a was obtained using rhythmic analysis mode while
Figure 3b used timbral analysis mode.
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Figure 2: 2D Fourier Analysis-Resynthesis Framework

2.3. Spectrum Display

The 2D frequency domain representation is a large matrix of com-
plex numbers. Some method is needed to present this information
clearly. The polar representation of complex data is the most log-
ical when considering audio signals. It is preferable to present
magnitude and phase components simultaneously to gain a better
understanding of the 2D spectral content.

L

S

H

White

Black

Cyan (180°) Red (0°)

Magenta (300°)Blue (240°)

Green (120°) Yellow (60°)

Figure 4: HSL Colour Space

This can be achieved by converting polar data to colour in-
formation [9] using the HSL colour space with full saturation, see
Figure 4. The following equations show how magnitude is mapped
to lightness and (wrapped) phase is mapped to hue:

H =
∠X
2π

(16)

L = arctan(|X|) ∗ (2/π) (17)

The HSL colour space can then be converted to RGB [10] and
displayed as a colour image plot. Figure 5 shows an example 2D
spectrum. The colour/phase information has been removed and the
intensity inverted for printing purposes.

Figure 5: 2D Spectrum Display of a Piano Note (Horizontally
Zoomed)

2.4. 2D Spectral Components

The fundamental component of 2D Fourier analysis can be inter-
preted as an audible sinusoid modulated by a rhythmic sinusoid
[5]. However using this rasterisation method it is clear that if com-
ponent signal periodicities are not synchronised with the analy-
sis window size then the signal will be skewed in the 2D analysis
space (Figure 6). The actual frequency of a stationary sinusoidal
component is given by:

fstat = fa + fr (18)
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(a) Rastogram
(201 Pixel Width)

(b) 2D Spectrum
(Zoomed On Origin)

Figure 6: A Non-Synchronised Sinusoid (220 Hz)

The rhythmic frequency (fr), having a smaller range and finer
resolution, essentially shows an error term of the audible frequency
(fa) analysis. These skewed signals can be seen to have non-
stationary phase across both dimensions, since in each consecutive
row/column the phase angle has changed.

A signal with a phase-stationary frequency in both axes of the
rastogram is an amplitude modulated sinusoid. Amplitude modu-
lation is conventionally considered in terms of a carrier frequency
and a modulation frequency. 1D Fourier analysis shows that am-
plitude modulation can be achieved using two sinusoids, f1 and
f2, with constant amplitude and frequency, where:

fcarrier =
f1 + f2

2
(19)

fmod = |(f2 − f1)| (20)

If the carrier frequency is synchronised to the width of analysis
in the rastogram then the AM signal is represented by symmetrical
points in each of the four quadrants of the 2D spectrum (Figure 7).
The absolute values of their frequency co-ordinates fa and fr will
be equal. Due to the conjugate symmetry of the real 2D Fourier
transform (13), the 2D spectral data contains duplicate information
and two of the quadrants are redundant. The negative quadrants of
either axis can be disregarded but conceptually it is easier to ignore
the negative audible frequency quadrants.

The remaining two points represent the sinusoids f1 and f2.
Both have the same audible frequency which is therefore equal to
fcarrier . They have equal absolute rhythmic frequency but one
is negative. The modulation frequency fmod is the difference be-
tween positive and negative rhythmic frequencies i.e. |2fr|.

(a) Rastogram
(200 Pixel Width)

(b) 2D Spectrum
(Zoomed On Origin)

Figure 7: 2D Representations of Bipolar Amplitude Modulation
(fcarrier = 220.5 Hz and fmod = 2 Hz)

Figure 8 shows the 2D spectrum of a sequenced drum rhythm
at 120 bpm which, when using a sample rate of 44.1kHz, gives
an integer period for a crotchet/quarter note. Symmetric points
in all quadrants of a 2D spectrum show that an AM "rhythmic"
component is present with synchronised carrier frequency. The
many symmetric points in this spectrum signify a synchronised
rhythmic pattern.

There are pairs of sinusoidal signals skewed in opposing di-
rections across the spectrum. Each sinusoidal component is repre-
sented by two points each due to the spectral redundancy, so only
the points in quadrants with positive audible frequency are needed.
The actual 1D frequency of the sinusoids can be determined by
summing the audible and rhythmic frequency co-ordinates of the
two points. Combined they create an AM sinusoid, where the
mean of their audible frequencies gives fcarrier and the difference
between their rhythmic frequencies gives fmod.

The rhythmic content of the audio signal is being analysed in
terms of a set of low-frequency amplitude modulations. This is the
main benefit of the 2D spectrum, it makes rhythmic modulation
much easier to detect than in the 1D spectrum.

Figure 8: 2D Spectrum Display of a Drum Beat

2.5. Analysis Issues

Spectral analysis in two dimensions is subject to the same issues as
conventional 1D methods, such as convolution with the spectrum
of the window function and smearing when frequency components
are not centred on an analysis point. There are additional limita-
tions for 2D analysis, some as a result of the simple rasterisation
approach instead of overlap-add methods. However this method
serves as a first step, allowing visual exploration of features to gain
understanding. The processing techniques can then be refined and
extended in the future.

Rectangular windowing causes particular issues. If a 2D spec-
tral component is not synchronised with the analysis frequencies
then spectral energy will leak into adjacent analysis bins due to
the high side lobe energy of the window’s spectrum [11]. But if a
component is synchronised then the spectrum of the window has
no effect because there are no discontinuities between the two ends
of the window. Unfortunately pitch and tempo related periods very
rarely contain an integer number of samples so this spectral smear-
ing is frequent. This can be shown using the previous piano note
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examples. In Figure 3b the texture of the rastogram is slanted be-
cause the pitch period is between 672 and 673 samples and in the
spectrum (Figure 5) there are clear smearing effects as a result.
The data could be resampled to fit the period to an integer number
of samples, improving the clarity of analysis.

Skewing of non-synchronous signal components is a problem
which reduces the intelligibility of the spectral display when com-
bined with the windowing issue. Extending the length of the anal-
ysis frames (rastogram rows) will increase the resolution of signal
analysis in the the audible axis. Reducing the inter-frame interval
to overlap frames will increase the rhythmic axis analysis resolu-
tion. The definition of spectral data could be improved further by
zero-padding the 2D array before the Fourier transform, increasing
the resolution of the display as shown by (7) and (8). The compu-
tational complexity of the 2D DFT increases by O(n2) with the
dimensions of the data matrix so these options are limited. Tech-
niques such as time-frequency reassignment [12] could be applied
during the analysis to reduce spectral smearing.

The most significant limitation in this analysis framework is
that aliasing in the rhythmic axis is intrinsic since the rhythmic
sampling rate fsr is much lower than frequencies within the signal.
The columns of the rastogram can be viewed as heavily decimated
versions of the 1D waveform. The appropriate low-pass filtering
to comply with the sampling theorem would remove the required
audible frequency content. This is a result of artificially dividing
one dimension of time into two with different resolutions.

2.6. Benefits of 2D Spectral Analysis

The outlined 2D spectral analysis provides a useful method for
viewing rhythmic range frequency modulations of audible frequen-
cies such as signal harmonics. It could be used for more detailed
rhythmic analysis of audio; there is clearly high spectral energy
with many symmetric components at sub-sonic frequencies that
correspond to rhythmic patterns in the signal. Timbral analysis
shows similar 2D spectral envelopes for all notes from an instru-
ment. Understanding timbre in terms of harmonic modulations
could have potential for robust pitch and time shifting.

3. AUDIO TRANSFORMATIONS

Although there are some issues with the described 2D Fourier anal-
ysis method, it clearly shows useful signal information. It is possi-
ble to produce interesting audio effects by manipulating the analy-
sis data and resynthesising 1D time domain audio via the 2D IDFT
(Figure 2). Some simple transformations of the 2D Fourier data
were carried out to investigate the potential for creative and ana-
lytical processing in this signal domain.

The effectiveness of the described signal transformations de-
pends heavily upon the signal content being synchronised to the
analysis dimensions. With the current analysis process this means
that applications are fairly limited.

3.1. 2D Frequency domain Filtering

Filtering can be performed in the 2D frequency domain by mul-
tiplying the Fourier data matrix of the signal with that of the de-
sired filter. In these initial experiments only simple filters were
used such as low-pass, high-pass, band-pass and band-stop in ideal
"brick-wall" and Butterworth configurations. The filter operation
is performed on either the audible or rhythmic axis.

Filtering in the audible axis yields similar results to conven-
tional 1D filtering provided that the signal components are well
synchronised. Filtering on the rhythmic axis produces some in-
teresting effects, altering the rhythmic or timbral structure (sec-
tion 2.2) whilst maintaining a similar harmonic character. Figure
9 shows an example filter spectrum and the 2D time domain result
of multiplying this with the spectrum in Figure 8.

(a) Magnitude Spectrum of an Ideal-Response Band-Pass Filter With
2D Structure. Cutoff Freq. = 0.5 Hz and Bandwidth = 0.25 Hz

(b) Filtered Drum Beat (see Figure 3a for original)

Figure 9: 2D Frequency Domain Rhythmic Filtering

The problem is that due to the inherent aliasing, it is difficult to
know what changes have actually been made to the spectral signal
content. The results are thus not entirely predictable but still inter-
esting and useful in providing creative permutations of a rhythmic
sequence.

The 2D Fourier transform has been used to perform 2D Weiner
filtering for noise reduction in speech processing [13], so this method
is not unique although its application to rhythmic transformation
for creative effect seems novel.

The same effects could be achieved with a time domain fil-
ter on the vertical axis of the rastogram, which would be much
more efficient computationally. However this is a simple applica-
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tion which could be extended to utilise both dimensions and alter
the rhythmic structure of a specific audible frequency band or ex-
tending it further, perform feature extraction/emphasis.

3.2. Magnitude Thresholding

Thresholding of the spectral magnitude data allows decomposi-
tion of the sound into its most or least prominent sinusoidal com-
ponents. It serves both as a creative effect and an analysis tool,
allowing decomposition of the 2D spectral structure of a signal. In
the 2D frequency domain thresholding can be performed on rows,
columns or spectral points i.e. in both axes.

Thresholding on rhythmic-frequency rows allows the most dom-
inant sub-sonic oscillations of the signal to be separated, an exam-
ple is shown in Figure 10. Performed along the columns it allows
the removal of audible components above or below the threshold,
which in timbral analysis mode causes separation of the signal par-
tials. The thresholding for individual points decomposes the signal
into the strongest or weakest individual sinusoidal components.

(a) 2D Spectrum - Rhythmic Fre-
quencies <23% of Max. Magnitude
Removed
(Horizontally Zoomed)

(b) Processed Rastogram
(see Figure 3b for original)

Figure 10: Rhythmic Frequency Magnitude Thresholding of a Pi-
ano Note

The thresholding tends to remove more high-frequency audi-
ble energy since audio signals often have larger magnitude in the
low frequency components. This aspect could be improved by
optionally weighting the audible frequencies according to a per-
ceptual loudness curve [14]. Another issue to consider is that
the opposing sinusoids of a rhythmic amplitude modulation do
not necessarily have identical magnitude and so may not be re-
tained/removed simultaneously. This would affect the rhythmic
structure. It would be easy to prevent this if desired by comparing
opposite points within a tolerance range.

3.3. Row/Column Shifts

An obvious and simple manipulation is to move row/column data
around in the 2D frequency matrix. In the audible axis column
shifting creates a change in the signal partials. In timbral mode
this operation never causes a pitch change because the frequency
resolution of analysis matches the harmonic spacing of the original
signal, although in rhythmic analysis mode it can change the signal
pitch.

Row shifting changes the rhythmic frequency of the data so
altering the rhythmic/timbral structure. The results are again un-
predictable due to aliasing on the rhythmic frequency axis and
skewing of non-synchronsied sinusoidal components. This effect

could be improved by incorporating phase difference calculations
such as those used in the phase vocoder [15], which would re-
duce the harmonic distortion caused by rearranging the frames
(rows/columns) of spectral analysis.

3.4. Resampling of Data

It was thought that resampling of the 2D spectral data could pro-
duce some very useful effects, changing the spectrum size or rescal-
ing the signal within the current analysis range. However this is
when the limitations of the analysis cause significant problems.

Pitch-shifting can be implemented by resampling across the
audible frequency axis, scaling the data across the spectrum rows
by a linear factor to adjust the audible frequencies of signal com-
ponents. This is functionally similar to pitch shifting methods that
use the 1D STFT [16]. Although in the described timbral analysis
mode there is a harmonic shift rather than a pitch shift since the
resolution is too low in that axis, the analysis frequencies match
the original signal harmonics.

By resampling rhythmic frequencies in the same way a change
in tempo could be achieved but the rhythmic analysis mode has too
low a resolution in this axis. Instead it produces a rhythmic change
rather than a tempo change. In timbral analysis mode the tempo
is altered without pitch change but unfortunately aliasing occurs
because the duration remains the same. If the rhythmic frequency
range is halved, the speed of the signal content will halve but since
the duration remains the same, the content wraps around and starts
again, as shown in Figure 11. When the rhythmic frequency range
is extended, the signal speed increases but begins to repeat itself
due to the periodic nature of Fourier analysis.

(a) Original Trumpet Note (G3) (b) Rhythmic Frequency Range Re-
duced to 75%

Figure 11: Attempted Tempo Change By Rhythmic Frequency
Range Reduction

Changing the spectrum dimensions will alter the length of the
signal on resynthesis. Resizing along one dimension changes the
analysis frequency points on that axis. The data can be resampled
to keep it at the original frequency.

In rhythmic mode, it was thought that adjusting the width of
the spectrum would change the duration of each row of rastogram
data whilst maintaining the original pitch. This would essentially
alter the tempo of the signal, changing the inter-frame time interval
in a similar way to granular time-scale techniques. Each frame/row
is either truncated or repeated to achieve the change, rather than
overlapping the frames like STFT methods. The rectangular win-
dow of rasterisation allows severe distortions using this method.

Changing the height of the spectrum would change the dura-
tion of the signal and resampling could be used to maintain the
signal tempo by keeping the original rhythmic frequencies. The
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results here are very similar to the rhythmic frequency scaling de-
scribed previously but the duration changes instead of the tempo.
The same issues occur when the duration is halved because the sig-
nal is at the same tempo, it wraps around to retain all of the signal
content, yielding a rastogram with the same form as Figure 11b
but twice the height.

The resizing methods also suffer from a lack of spectral res-
olution. The processing attempted here was basic but it shows
that there maybe some potential for future use of these types of
technique. If the analysis is refined for precision and transforma-
tion rather than visual comparison with the rastogram, then these
methods will be much more effective. It will then be easier to de-
termine the appropriate application areas and the transformation
techniques themselves can be refined and advanced to make better
use of the two frequency axes simultaneously.

One additional factor that needs consideration is that there is
often a lot of energy at DC in the rhythmic axis, which requires
special handling when resampling is used to avoid strong low-
frequency components appearing in the signal.

4. CONCLUSIONS

Combining raster scanning and the 2D Fourier transform allows
analysis of audio with two dimensions of frequency. This makes it
possible to observe low-frequency rhythmic modulations of audi-
ble frequencies in a 2D spectrum display, provided that the width
of the raster scan is set to match a periodic component of the sig-
nal.

The 2D spectrum can be displayed as a colour image by map-
ping magnitude to lightness and phase to hue, giving a clear and
attractive representation of a large data array. Its horizontal axis
shows audible frequency partials in the conventional spectrum range
and the vertical axis shows rhythmic frequency in the sub-sonic
range. Each 2D spectral point defines a sinusoidal partial which
has a frequency of the sum of its audible and rhythmic frequency
axis co-ordinates.

The described analysis approach is useful for direct compari-
son of time domain and frequency domain signal features in two
dimensions, however there are limitations when it comes to de-
tailed analysis and processing of the 2D Fourier data. The reso-
lution of analysis could be improved by using overlapping frames
with a bell-shaped window function as is common for the STFT.
Windowing would reduce distortions and larger Fourier transforms
could be utilised to improve the spectral definition.

The initial experiments with signal transformation in the 2D
frequency domain show interesting potential for novel effects, with
some exciting results, although at the moment these implemen-
tations have limited capabilities, partly due to problems with the
analysis methods. Future work should look to improve both anal-
ysis and processing techniques using the 2D Fourier transform.
Similar analysis and processing can be performed using a wavelet
transform [17]; a comparison of these methods should also be car-
ried out in future work.

This investigation has established that this is a useful mech-
anism by which to work with audio and demonstrated some po-
tentially interesting applications both for researchers and sound
designers.
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