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ABSTRACT

In this paper a new method for analysis and modeling of nonlinear
audio systems is presented. The method is based on swept-sine
excitation signal and nonlinear convolution firstly presented in [1,
2]. It can be used in nonlinear processing for audio applications,
to simulate analog nonlinear effects (distortion effects, limiters) in
digital domain.

1. INTRODUCTION

As far as audio digitalization is concerned, the analog audio recor-
dings are converted into digital files, the analog tapes are replaced
with digital medias and the audio devices are price-out and repla-
ced by the digital ones. Even though it is claimed that analog audio
still offers the best sound quality, we cannot imagine today life wi-
thout digital signal processing.

Moreover, rapid development of computer industry results in
digitalization of analog audio effects. Nevertheless, several analog
audio processing devices exhibit nonlinearities, which are not easy
to simulate. Volterra series is an approach known for several years,
but is not suitable for strong harmonic distortion [3]. Several other
nonlinear models have been proposed, such as neural network mo-
del [4], MISO model [5], NARMAX model [6, 7], hybrid genetic
algorithm [8], extended Kalman filtering [9], particle filtering [10].

In this paper, we propose a new method for identifying non-
linear systems, based on an input exponential swept-sine signal
[1, 2], allowing a robust and fast one-path analysis and model esti-
mation of the unknown nonlinear system under test. The analysis
method is discussed in section 2. The nonlinear model used for the
synthesis of distorted signal consists of several parallel branches,
each branch consisting of a nonlinear function and a linear fil-
ter. The nonlinear functions can be chosen either based on partial
knowledge of the nonlinear system or, based on any mathematical
series such as power series. The model is discussed in section 3.
To show the efficiency of the method an audio limiter (the case of
a strong harmonic distortion) is analyzed, its nonlinear model is
identified and tested on both musical and speech signals.

2. ANALYSIS OF NONLINEAR SYSTEMS

The analysis method is partly based on nonlinear convolution me-
thod presented in [1, 2]. The method uses a swept-sine signal (also
called a chirp), exhibiting an exponential instantaneous frequency,
as excitation signal and allows the characterization of a nonlinear
system (NLS) in terms of harmonic distortion at several orders.

The block diagram of the method is shown in Fig. 1. First,
an exponential swept-sine signalxs(t) is generated and used as
the input signal of the nonlinear system under test. The excitation
swept-sine signalxs(t) is defined as

xs(t) = sin
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wheref1 andf2 are start and stop frequencies andT̂ is the time
duration of the swept-sine signal. The rounding operator in Eq.(2)
is due to the condition of synchronized higher orders as depicted
in Fig.2.

The distorted output signalys(t) of the nonlinear system is
recorded for being used for the so-called nonlinear convolution
[1]. Next, the signal noted̃xs(t) is derived from the input signal
xs(t) as its time-reversed replica with amplitude modulation such
that the convolution betweenxs(t) andx̃s(t) gives a Dirac delta
functionδ(t). The signal̃xs(t) is called "inverse filter" [1].

Then, the convolution between the output signalys(t) and the
inverse filter̃xs(t) is performed. The result of this convolution can
be expressed as

ys(t) ∗ x̃s(t) =

∞X
i=1

hi(t + ∆ti), (3)

wherehi(t) are higher-order impulse responses and∆ti are the
time lags between the first and thei-th impulse response. Since
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Figure 1:Block diagram of the nonlinear convolution process in NLS identification.
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Figure 2: Swept-sine signalxs(t) in time domain (below), with
the time length chosen according to instantaneous frequencyfi(t)
(above).

the nonlinear impulse response consists of a set of higher-order
impulse responses that are time shifted, each partial impulse res-
ponse can be separated from each other, as illustrated by Fig. 3.

The set of higher-order nonlinear impulse responseshi(t) can
be also expressed in the frequency domain. The frequency res-
ponse functions of higher-order nonlinear impulse responseshi(t)
is then their Fourier transforms

Hi(f) = FT [hi(t)] . (4)

The frequency responsesHi(f) represent the frequency depen-
dency of higher-order components. The frequency responseH1(f)
is consequently the response corresponding to the linear part of the
system. Similarly, the frequency responseHi(f) (i > 1) may be
regarded as the system frequency response, when considering only
the effect of the input frequencyf on thei-th harmonic frequency
if of the output.

3. MODEL IDENTIFICATION

The frequency responsesHi(f) are next used for the identification
of the nonlinear model of the system under test. The model is

t

h(t)

h1(t)

h2(t)
h3(t)

h4(t)

h5(t)

−∆t1 = 0
−∆t2−∆t3−∆t4−∆t5

Figure 3: Result of the nonlinear convolution processys(t) ∗
x̃s(t) in the form of set of higher-order nonlinear impulse res-
ponseshi(t).

shown in Fig. 4. It is made up of N parallel branches, each branch
consisting of a linear filterAn(f). The input signalsgn[x(t)] are
known linear and/or nonlinear functions ofx(t). This model is
similar to the Multiple Input Single Output model proposed in [5].

The linear filtersAn(f) of the nonlinear model can be moreo-
ver derived in the time domain as impulse responsesan(t) related
to then-th branch of the MISO-based nonlinear model. The output
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Figure 4:Nonlinear model with input signalsgn[x(t)] and linear
filtersAn(f), n ∈ [1, N ].
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signaly(t) of the nonlinear system can then be expressed as

y(t) =

NX
n=1

Z ∞
−∞

gn[x(τ)]an(t− τ)dτ, (5)

whereN is the number of input signals of the MISO-based nonli-
near model.

Frequency response functionsHi(f) being experimentally ob-
tained and the nonlinear MISO model inputsgn[x(t)] being cho-
sen, the identification consists in the resolution of a linear system
of N equations using the least squares method. First, the coeffi-
cientscn,k of Discrete Fourier Series of the functionsgn[x(t)] are
calculated as

cn,k =
2

M

M−1X
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2π
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km

�
, (6)

for an input signal being a discrete-time harmonic signal of length
M . Next, the following set of linear equations with unknown
An(f) is solved

Hi(f) =

NX
n=1

An(f)cn,i + Res(f), (7)

for i ∈ (1, I) and n ∈ (1, N), Res(f) being the residue. As
I ≥ N , there can be more equations than unknowns. To solve the
set of equations (7) forI > N , the least squares algorithm [11] is
applied, minimizing the residue Res(f).

If the functionsgn[x(t)] are improperly chosen and/or if at
least one of the input signals is missing, the value of the residue
increases drastically, which makes Res(f) an a posteriori crite-
rium for the choice of input signalsgn[x(t)].

If one of the nonlinear functionsgn[x(t)] produces high har-
monic distortion components, the nonlinear aliasing [12] can ap-
pear. This can be avoid by choice of the nonlinear functionsgn[x(t)]
according to any mathematical series. The most used series is the
one based on power series, such as

gn[x(t)] = xn(t). (8)

In such case the nonlinear aliasing can be controlled by the fre-
quency range. The highest frequency must not exceedfs/(2N),
wherefs is the sampling frequency andN is the highest power
function in the model. The lowest frequency limit is given as well
by the highest power functionN . The filtersAn(f) are valid only
in frequency band[Nf1, f2]. For that reason the model should be
preceded by a bandpass filter as shown in Fig.5. The amplitude
limitation is as well given by the excitation signalxs(t) used for
the analysis. As the nonlinear system was not excited with level
higher than the amplitudeA of the excitation signalxs(t) the non-
linear model can be used for signals not exceeding this amplitude
level.

4. EXPERIMENTAL MEASUREMENT AND SYNTHESIS

In this section, a real-world NLS is selected to show the effective-
ness, accuracy and potential of the proposed method. The system
under test is the limiter part ofdbx 266XLCompressor, Limiter,
Gate [13]. The limiter is a well known NLS producing highly dis-
torted output waveforms. The clipping level of the limiter is set to
0.25 V.
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Figure 5:Generalized Polynomial Hammerstein model (power se-
ries nonlinear model).
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Figure 6:Block schema of the nonlinear model validation.

The following process consists in two steps: (a) analysis of
the system under test including the nonlinear model identification
and (b) comparison of the output signals of the model and of the
system under test when excited with a musical and speech signal.

First, the systems response to the excitation swept-sine signal
xs(t), defined in section 2, is convolved with the inverse filter in
order to obtain the nonlinear impulse responses. Next, the linear
filters of the nonlinear model are estimated using Eq.(6). The func-
tions gn(t) are chose according the power series (Eq.(8)). Then,
once the nonlinear model of the system under test is estimated, the
model can be used as a digital nonlinear effect with single input
and single output. As explained at the end of the section 3 since
the model was acquired using the excitation swept-sine signal with
givenf1, f2 andA, the model can be successfully applied only for
input signals with frequency rangeNf1 : f2 and not exceeding
the amplitudeA.

The measurement conditions are selected as follows: The sam-
pling frequency used for the experiment isfs = 96 kHz. The
limiting threshold of the audio limiter is set-up to 0.25 V. The ex-
citation signal is sweeping fromf1 = 5 Hz to f2 = 6.5 kHz
with amplitudeA = 1 V. The nonlinear model consists ofN = 7
branches.

To validate the accuracy of the model the following test is then
performed. An input signal is put to the inputs of both, real limi-
ter and its estimated model and the responses are compared. The
block schema is depicted in Fig.6. The signalerr(t) being the dif-
ference between original outputyr(t) and the model outputym(t)
is chosen as a criterion for the comparison.

Two kinds of audio signals has been chosen for the test - a mu-
sical signal (sample of piano concerto) and a speech signal (sample
of czech poem recital), both with duration of 2 seconds. The re-
sults are shown in Figs. 7-10. Each figure has two parts, above -
with the inputx(t) (green), real-outputyr(t) (blue) and model-
outputym(t) (red) and below - with the residual errorerr(t). In
all four figures the real-output and model-output match rather pre-
cisely.
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5. CONCLUSIONS

In this paper an application of the method for analysis and mode-
ling of nonlinear systems (NLS) using swept-sine signals has been
presented. The application of the method has been focused to au-
dio applications and nonlinear effects. The model of nonlinear
system (i.e. existing analog effects system producing a nonlinear
distortion) can be identified and further used as a replica of the
analog effect in digital domain. The method is based on the nonli-
near convolution method, with swept-sine input signal, and allows
to identify the NLS in a one-path measurement.
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Figure 7:Music audio file: comparison between real-output and model-output (above) and their difference - residual error (below).
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Figure 8:Music audio file: comparison between real-output and model-output (above) and their difference - residual error (below).
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Figure 9:Speech audio file: comparison between real-output and model-output (above) and their difference - residual error (below).
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Figure 10:Speech audio file: comparison between real-output and model-output (above) and their difference - residual error (below).
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