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ABSTRACT

Spring-based artificial reverberation was one of the earliest at-
tempts at compact replication of room-like reverberation for stu-
dio use. The popularity and unique sound of this effect have given
it a status and desirability apart from its original use. Standard
methods for modeling analog audio effects are not well suited to
modeling spring reverberation, due to the complex and dispersive
nature of its mechanical vibration. Therefore, new methods must
be examined.

A typical impulse responses of a spring used for reverbera-
tion is examined, and important perceptual parameters identified.
Mathematical models of spring vibration are considered, with the
purpose of drawing conclusions relevant to their application in an
audio environment. These models are used to produce new results
relevant to the design of digital systems for the emulation of spring
reverberation units. The numerical solution of these models via the
finite difference method is considered. A set of measurements of
two typical spring reverberation units are presented.

1. INTRODUCTION

Spring reverberation was originally developed as a compact and
cost-effective method of approximating room-reverberation, for
use either in a studio setting or as part of musical instrument or
amplification device [1, 2, 3, 4]. Although this method does pro-
duce a dense set of echoes, the peculiarities of wave propagation
on a spring mean that the overall sound produced is rather dif-
ferent to that of a room. Nonetheless, its convenience and low-
cost compared to other artificial reverberation techniques lead to
widespread use in the popular music of the mid to late 20th cen-
tury, with several styles of music making the sound of the spring-
reverberator integral to their sonic palette. As a consequence of
this use, the effect has gained a status apart from normal rever-
beration techniques, with an audience and specific applications of
its own. With the transition of much of the music-production pro-
cess to a digital environment, demand has appeared for a method
of satisfactorily replicating the sound of the spring-reverberator.
Early attempts at fulfilling this demand via a traditional digital re-
verberation approach [5] or via convolution techniques fall short
for a number of reasons - notably lack of flexiblity and poor repli-
cation of the distinctive features of the effect [6]. Recently, more
advanced treatments of the topic have been produced [7], which
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rely on calculation of a high-order all-pass filter. This method pro-
duces good results, but still has the drawback of lack of flexibility
with respect to physical parameters.

This article examines the qualities that define a spring rever-
beration effect, relates them to theoretical models of spring vibra-
tion, and finally presents a brief overview of a method of applying
these theoretical models to produce a digital algorithm for spring
reverberation. A set of physical measurements of the geometry of
two typical spring-reverberation units is also presented.

2. ANATOMY OF A SPRING REVERBERATION UNIT

The implementation of most spring reverberation units post-1960
is fairly standard. One or more helical springs are configured in a
network. Most units consist of several springs connected in par-
allel, although some also utilize a number of serially connected
springs in turn connected in parallel. Some less common units use
springs to connect opposite ends of parallel springs, resulting in a
’Z’ like configuration. The purpose of these different configura-
tions is produce a more complex pattern of echoes.
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Figure 1: Schematic diagram of a simple spring-reverberation
unit, consisting of single springs connected in parallel.

Figure 1 shows a simple schematic overview of a spring re-
verberation unit employing two parallel springs. Each individual
spring is suspended under a small amount of tension between two
sections of wire - one at each end of the casing. Attached to this
section of wire is a small cylindrical magnetic bead. The wire
then passes through a section of rubber damping material before
terminating in a soldered connection to the casing of the device.
The magnetic bead is driven torsionally by passing a signal into
a nearby electromagnetic coil. Torsional vibration of the mag-
net/wire system translates to vibration tangential to the path of the
wire at a point within the helix. At the opposite end of the spring,
the other section of straight wire also has a magnetic bead attached.
The vibration of the magnetic bead induces a current in a nearby
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coil, and an output signal is therefore produced. The system is es-
sentially symmetrical, although the input and output coils tend to
be wound differently so as to provide appropriate input and output
impedances. Input and output to multiple springs can be handled
by a single pair of coils by extending the core of the electromagnet.

3. ANALYSIS OF A TYPICAL IMPULSE RESPONSE

A spectrogram of the initial section of a typical single-spring im-
pulse response can be seen in Figure 2. Clearly visible are a num-
ber of echoes, the form of which indicates highly dispersive be-
haviour. There appear to be two distinct regions within the im-
pulse response, a region of lower-frequency dispersive echoes and
a region of high-frequency (and less dispersive) echoes. The high-
frequency echoes appear to repeat at a faster rate than the low-
frequency echoes. The transition point between these two regions
is labelled as FC , and appears to correspond with a point of mini-
mum propagation velocity.

In the majority of springs measured, the region of high fre-
quency echoes above FC is of much lower amplitude than that
of the echoes below FC , therefore it would seem reasonable to
assume that the characteristic sound of a spring reverberator is
mainly related to the region below FC . The nature of these echoes
can be described by two parameters - the transition frequency FC ,
and the time between each echo, TD .

TD

Figure 2: Spectrogram of measured impulse response of a typical
spring (see Table 2, Spring 3).

4. HELICAL SPRING VIBRATION MODELS

Mathematical modeling of spring vibration is a topic which has
seen much work over the years, mainly due to its importance in
mechanical engineering. Some of the earliest models treat a spring
as a uniform elastic bar [8], but such models do not reproduce the
dispersion characteristics which make a spring interesting in an
audio context [6]. To reproduce these characteristics, it appears to
be necessary to model the helical geometry of the spring. The best
known of these helical models is the work of Wittrick [9], written
as a system in twelve variables. The Wittrick model has also been
extended to account for loading of the spring [10].

Fletcher et al [11, 12] make a number of approximations which
allow them to present a simpler model than Wittrick’s system.

Firstly, they assume that the helix angle of the spring will be small
enough to be considered to be zero. This essentially reduces the
problem to one of a curved rod and allows them to consider only
vibrations in the plane of curvature. The effect of neglecting the
helix angle removes the need to consider torsional motion, and
hence Timoshenko effects. The governing equations they produce
are as follows:
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where E is Young’s modulus for the material of the wire, ρ is the
density of the material, r is the radius of the wire and κ is the cur-
vature of the helix. u gives displacement in the direction of the
tangent of the helix at any point, v gives displacement in the direc-
tion of the radius of curvature. s is a coordinate that follows the
line of the wire. When κ = 0, system (1) reduces to the equation
of motion of an ideal bar (in v), and the 1D wave equation (in u).
Figure 3 shows the direction of the displacements u and v with
respect to the geometry of the spring.

s u

v

R

Figure 3: Section of helical spring showing the direction of the
displacements u and v, both of which are dependent on the helix
arc-length coordinate, s. Also shown is the helix radius, R.

This system is linear and shift-invariant, and therefore its char-
acteristics may be summarized by a dispersion relation, i.e. the
relationship of spatial frequency (wavenumber, β) to temporal fre-
quency (f ). The dispersion relation possesses four solutions grouped
in two pairs, corresponding to two modes of oscillation. One of
these modes is beyond the range of human hearing [6, 13]. The
other mode is within human hearing range, and its form is given in
Figure 4.

The form of the dispersion relation clearly shows the behaviour
observed in the impulse response in Figure 2. The derivative of
the dispersion relation gives the group velocity, a measure of the
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Figure 4: Dispersion relation of audio-range mode calculated from
Fletcher model for a typical spring (see Table 2, Spring 3).

speed of propagation of a disturbance through the system around a
particular wavenumber. The local maximum in the dispersion re-
lation therefore corresponds with a point of minimum propagation
velocity. It is clear from the dispersion relation that this point cor-
responds with the transition frequency FC observed in the impulse
response.

It is important to notice that the dispersion relation for this sys-
tem is not a single-valued function of frequency. In the range of
frequencies below FC , there are three different propagation veloc-
ities associated with a particular frequency. This could potentially
make a spring-reverberation model constructed via standard sig-
nal processing constructs more complex and more computationally
demanding, as multiple parallel processing paths would be neces-
sary. It is therefore beneficial to consider a different approach, one
based on direct numerical solution of system (1) - with the even-
tual goal of comparison with an equivalent model constructed via
the standard audio signal processing paradigm.

If system (1) is to be used for numerical modeling of a spring
reverberator, some form of loss must be incorporated. In the ab-
sence of more detailed insight into the loss mechanisms of the real
system, it is possible to add an ad-hoc loss model. This is achieved
simply by adding loss terms of −2σx

∂x
∂t

to each equation, where
x represents the variable in question. It is also necessary to model
the input/output process accurately, and this is achieved by cou-
pling a mass-spring system to each end of the spring to represent
the magnetic driving method[13].

4.1. Characterizing Perceptual Properties in Terms of Physi-
cal Parameters

By manipulation of the dispersion relation for the system 1, it is
possible to derive some results connecting the perceptual parame-
ters, FC and TD , to easily measurable physical parameters of the
spring.

TD ≈
4LR

r
q

E
ρ

(2)

where L is the uncurled length of the wire, R is the radius of the
helix, r is the radius of the wire, ρ is the density of the material
and E is Young’s modulus of the material. TD gives a measure of

the delay time of the spring, specifically the time taken for a wave
to propagate the length of the spring twice, in the limit as β → 0.
This gives a measure of the time between discrete echoes in the
impulse response. The limit as β → 0 is chosen, as this is the
point of maximum propagation velocity within the low-frequency
dispersive region. As should be clear from the geometry, L can be
calculated from more easily measured parameters as follows:

L =
q

(2πRN)2 +H2
L (3)

where R is the radius of the helix, HL is its length and N is the
number of turns completed over the course of its length.

An expression for the transition frequency FC can also be de-
rived:
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3r
q

E
ρ

16
√

5πR2
(4)

These two results relate the main perceptual features of a single-
spring reverberator to physical measurements of the spring, and
hence may be used to both predict the response of real springs and
as a more intuitive physical parameter model for models based on
signal processing constructs. A discussion of the derivations of the
above results is given in Appendix B.

5. FINITE DIFFERENCE MODELS

A standard approach to simulation that is especially suited to prob-
lems in 1D is to make use of a finite difference approximation.
System (1) is a coupled pair of equations in 1D, and is therefore a
good candidate for solution using this method.

There are numerous well known approaches to constructing a
finite difference approximation to a continuous system. A concep-
tually simple and flexible approach is to define discrete approx-
imations to differential operators, known as difference operators
[14, 13], along with discrete versions of the dependent variables of
the system, known as grid functions. An analogous discrete system
can then be prodeced by replacing differential operators with dif-
ference operators and dependent variables with grid functions. The
difference operators are defined in terms of unit delays (for time
differentials) or unit shifts (for spatial differentials), and therefore
this discrete system can be expanded out into a scheme for calcu-
lation of a numerical solution to the system. It is important to note
that it is possible to construct many different difference operators
for a particular differential operator. For example, it is possible to
construct ∂

∂x
, an approximation to a first differential with respect

to some spatial coordinate x, in terms of forward shifts, backwards
shifts or a mixture of the two. As a consequence, many calculation
schemes varying in robustness and accuracy can be produced from
a single discrete system.

Selection of only centered difference operators results in an
explicit calculation scheme [6]. However, the scheme produced
has severe stability and accuracy problems, producing acceptable
results only at very high sampling frequencies. A more advanced
approach is to specify an implicit family of schemes, via the use
of the relationship between certain difference operators and a sim-
ilarly defined discrete averaging operator [14, 13]. The result is a
family of schemes with a number of free parameters, which can
then be tuned to produce optimum stability and accuracy. The
results produced by this approach are much better than those pro-
duced by the naive explicit approach.
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Figure 5: Spectrogram of impulse response of a typical spring (for
measurements see Table 2, Spring 3).

Figure 6: Spectrogram of impulse response of simulation of a typ-
ical spring (for measurements see Table 2, Spring 3).

Figure 5 shows a spectrogram of the impulse response of a
spring of the measurements given for Spring 3 in Table 2. Figure
6 shows a spectrogram of a simulation of this spring via the use
of the implicit family of schemes described above. Clearly, the
agreement between the measured response and the simulated re-
sponse is quite close. The values of TD and FC both appear to be
in good agreement. However, the reflection rate of echoes in the
region above FC in the simulated result appears to be lower than
that of the real result. This is consistent with the increasing effect
of numerical dispersion at higher frequencies[13]. The importance
of the discrepancy is debatable, as the perceptual importance of the
region above FC is lower than that of the region below. It may be
possible to remove this discrepancy with further tuning of the free
parameters of the implicit family of schemes.

5.1. Viability as a method for real-time audio processing

Consideration of the computational complexity of this approach
is important [13]. The memory cost and number of operations
required per time step scale roughly linearly with TD and FC ,
and roughly with the square root of the sampling frequency. An

un-optimised implementation of the scheme in MATLAB running
under a Microsoft Windows environment and using a single-core
2GHz Intel processor takes approximately one minute to calculate
a three second sample at a sample rate of 44100 Hz. The parame-
ters chosen were consistent with those given in Appendix A. This
is rather far from real-time operation, but gains can likely be made
by optimizing the scheme and implementing in a more efficient
environment.

6. CONCLUSIONS

Mathematical models of helical vibration provide a useful insight
into spring reverberation, and can be used to produce novel expres-
sions relating physical parameters of the spring with the perceptual
qualities of its sound. Numerical solution of these models via fi-
nite difference techniques shows some promise for implementation
in audio applications, but requires more development to improve
numerical accuracy and reduce computational cost to the level re-
quired for real-time application.

7. REFERENCES

[1] L. Hammond, “Electrical musical instrument,” US Patent
No. 2230836, February 1941.

[2] L. Hammond and J.M. Hanert, “Electrical musical instru-
ment,” Feb. 25 1941, US Patent 2,233,258.

[3] H. Laurens, “Musical instrument,” Nov. 11 1941, US Patent
2,262,179.

[4] J.D. Stack, “Sound reverberating device,” Mar. 9 1948, US
Patent 2,437,445.

[5] R. Kuroki, “Sound effect imparting apparatus ,” Jan. 26
1999, US Patent 6,580,796.

[6] J.D. Parker, “Spring reverberation: A finite difference ap-
proach,” M.S. thesis, University of Edinburgh, 2008.

[7] J.S. Abel, D.P. Berners, S. Costello, and J.O. Smith III,
“Spring reverb emulation using dispersive allpass filters in a
waveguide structure,” AES 121st Int’l Conv., San Francisco,
2006.

[8] J.A. Haringx, On Highly Compressible Helical Springs
and Rubber Rods, and Their Application for Vibration-Free
Mountings, Philips Research Laboratories, 1950.

[9] W.H. Wittrick, “On elastic wave propagation in helical
springs,” International Journal of Mechanical Sciences,
1966.

[10] L.E. Becker, G.G. Chassie, and W.L. Cleghorn, “On the nat-
ural frequencies of helical compression springs,” Interna-
tional Journal of Mechanical Sciences, vol. 44, no. 4, pp.
825–841, 2002.

[11] N.H. Fletcher, T. Tarnopolskaya, and F.R. de Hoog, “Wave
propagation on helices and hyperhelices: a fractal regres-
sion,” Proceedings: Mathematics, Physical and Engineering
Sciences, pp. 33–43, 2001.

[12] T. Tarnopolskaya, F.R. de Hoog, and N.H. Fletcher, “Low-
frequency mode transition in the free in-plane vibration of
curved beams,” Journal of Sound and Vibration, vol. 228,
no. 1, pp. 69–90, 1999.

DAFX-4



Proc. of the 12th Int. Conference on Digital Audio Effects (DAFx-09), Como, Italy, September 1-4, 2009

[13] S. Bilbao and J.D. Parker, “A virtual model of spring re-
verberation,” IEEE Transactions on Audio, Speech and Lan-
guage Processing, Accepted.

[14] S. Bilbao, Numerical Sound Synthesis, John Wiley and Sons,
2009.

[15] A. Farina, “Simultaneous measurement of impulse response
and distortion with a swept-sine technique,” Preprints - Au-
dio Engineering Society, 2000.

A. SPRING MEASUREMENTS

This appendix presents a set of measurements of spring geometries
taken from two typical spring reverberation units. Measurements
were taken using a micrometer and Vernier calipers, and are rea-
sonably accurate - however the intention is to provide an idea of
the geometries typical to a spring reverberation unit rather than
definitive measurements of a particular unit.

Figure 7: Spectrogram of impulse response of Olson X-82 reverb
unit.

The X-82 is a small device from the early 1960s, manufactured
by Olson Electronics. It consists of two small springs in parallel,
and according to the manufacturer’s literature it is intended for use
in small instrument amplifiers or in a car audio system. The spring
geometries appear to have been chosen so as to provide similar TD
for each spring, but with a differing FC .

The second unit is a device taken from a Leem Pro KA-1210
guitar amplifier from the early 1990s. It is slightly larger than the
Olson unit, and employs three springs in parallel. In contrast to the
design of the Olson unit, this unit uses spring geometries chosen
to provide a range of TD values but very similar FC values.

Both units appear to use steel wiring, and therefore a Young’s
Modulus of E = 211N/m2 and a density of ρ = 7800 kg/m3

are used for all the calculations in this document.
Impulse response measurements were taken of these two units,

using a sine-sweep method [15]. Spectrograms of the response of
both units are given in figures 7 and 8. The impulse responses of
each individual spring was measured by damping the other springs
within the unit using padded clamps. Further information, includ-
ing impulse responses for each individual spring and further docu-
mentation of the units, is available at:
http://www.acoustics.hut.fi/publications/
papers/dafx09-sr/

Figure 8: Spectrogram of impulse response of Leem Pro KA-1210
reverb tank.

Table 1: Olson X-82 Measurements

Spring 1 Spring 2
Helix Length (cm) 6.5 6.5
Helix Diameter (cm) 0.54 0.61
Number of Turns 148 133
Wire Diameter (cm) 0.035 0.035
Magnet Length (cm) 0.5 0.5
Magnet Diameter (cm) 0.21 0.21

B. DERIVATION OF PERCEPTUAL PARAMETERS

In order to derive the perceptual parameters discussed in section
4.1, we start by examining the dispersion relation of system 1. The
dispersion relation is produced by writing the system in matrix
representation, inserting a test solution of the form est+iβx, and
calculating the determinant of the matrix.

E2r2β2

4L2R4ρ2
− E2r2β4

2L4R2ρ2
+

E2r2β6

4L6ρ2
(5)

−Er2ω2

4R4ρ
− Eω2

R2ρ
− Eβ2ω2

L2ρ

+
Er2β2ω2

2L2R2ρ
− Er2β4ω2

4L4ρ
+ ω4 = 0

where ω and β are the angular frequency and wavenumber respec-
tively,E is Young’s modulus of the material, ρ is the density of the
material, L is the uncurcled length of the wire, r is the radius of the
wire and R is the radius of the helix. Solving this equation for ω
produces two pairs of solutions, only one of which it is necessary
to consider (see section 4). The group velocity can be calculated
as a function of β by differentiating this solution with respect to
β. If we evaluate the limit of the group velocity as β → 0, we
produce the following expression:

ν0 =

q
E
ρ
r

LR
q

4 + r2

R2
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Table 2: Leem Pro KA-1210 Measurements

Spring 1 Spring 2 Spring 3
Helix Length (cm) 16.3 16.3 16.3
Helix Diameter (cm) 0.44 0.45 0.46
Number of Turns 303 280 351
Wire Diameter (cm) 0.035 0.035 0.035
Magnet Length (cm) 0.4 0.4 0.4
Magnet Diameter (cm) 0.15 0.15 0.15

Since r2

R2 is of the order of 10−4 for values of the parameters typ-
ical to our application, we can make the following approximation:

ν0 u

q
E
ρ
r

2LR

Given that the system is dimensionless and defined over the unit
interval, we need only take the reciprocal in order to derive an
approximate expression for the time taken to traverse the length
of the spring once. The time between two echoes received at the
output end of the spring is clearly equivalent to the time taken to
traverse the length of the spring twice, hence we can produce an
expression for this delay time:

TD u 4LR

r
q

E
ρ

To derive the parameter FC , the dispersion relation given in equa-
tion 5 is again solved, and the relevant solution evaluated at the
point β = q/2. After some manipulation and a Taylor expansion,
we arrive at:

FC u
3r
q

E
ρ

16
√

5πR2

which is accurate to first order.
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