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ABSTRACT

The linear frequency (constant-bandwidth) scale of the FFT has
long been recognised as a disadvantage for audio processing. Long
analysis windows are required for adequate low-frequency resolu-
tion, while small windows offer lower latency, better handling of
transients, and reduced computation cost. A constant-Q form of
analysis offers the possibility of increased low-frequency resolu-
tion for a given window size, this resolution being essential for
many fundamental processing tasks such as pitch shifting.

We consider the application of the Sliding Discrete Fourier
Transform to a Constant-Q analysis. The increased flexibility of
sliding allows for a variety of data alignments, and we produce the
mathematical formulation of these. Windowing in the frequency
domain introduces further complications. Finally we consider the
implementation of the analysis on both serial and parallel comput-
ers.

1. INTRODUCTION

The Discrete Fourier Transform (DFT) is usually calculated by
the FFT algorithm, but this forces a number of constraints, like
a power of 2 window size1 and frequency bins of equal width in
Hertz. With the increased computational power now available it
is possible to consider alternative methods. We have already pre-
sented the Sliding Discrete Fourier Transform[1] and the Sliding
Phase Vocoder[2, 3] in both theory and practice, following the lead
of Moorer[4]. There we used the Sliding Discrete Fourier Trans-
form (SDFT) as a direct replacement for the FFT, incorporated into
a full sliding phase vocoder (SPV) and gained musically both from
the increased bandwidth in each bin and from the single-sample
update. Latency is also reduced. Pitch shifting was shown to be
greatly simplified, as the bandwidth of each bin is bounded only
by the Nyquist rate. For example we have demonstrated its use in
applying classic audio-rate FM to an incoming audio stream.

∗ Also at University of Bath
† Sometime Research Officer, University of Bath
1Some implementations, such as FFTW, employ a mixed-radix ap-

proach to relax the power-of-2 restriction at the cost of some increased
computation

In this paper we consider the other often quoted advantage of
the SDFT, that the frequency bins do not need to be the same size.
We will consider that implication of a constant-Q variant of the
DFT, performing the stepping via sliding. By Q we mean for each
bin the ratio of centre frequency to the bandwidth. We show that
the computation is viable, and the results are indeed as expected.

The problem of constant-Q frequency representation is cer-
tainly not new: for example Brown[5] considers this problem, and
there are many others. It was considered sufficiently important
that Izmirli[6] was willing to consider multiple FFTs to get the
information. There have been various attempts to approximate a
constant-Q transform from a conventional FFT, such as Härmaä
et al.[7] who used a filter to warp the original signal according to
psychoacoustic principles. Other approximations can be found in
[8], [9] and [10].

2. OFFSET CONSTANT Q SLIDING DFT

Traditional constant Q DFTs take all the samples in their analysis
starting at the beginning of the frame (e.g. [11]). Thus the high
frequency bins, having shorter frames, ignore the later samples
from the frame, as shown in table 1. Some of these samples might
be covered in an overlap as the frames are stepped.

Table 1: Normal alignment of frames.

0 summing over these samples N − 1
low ←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
med ←−−−−−−−−−−−−−−−→
high ←−−−−−−→

In the sliding constant Q DFT, the situation is somewhat dif-
ferent as each sample is analysed at some point as it slides through
every frame.

In effect Q measures how many cycles are needed to make
an analysis. To resolve a fraction f of a tone we have Q =
1/(2f/6−1), so for a quarter-tone resolution (21/24 ratio between
bin centres) Q is approximately 34. The lowest frequency bin is
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the longest: for a frequency of 27.5HZ (the lowest A on a standard
piano) at standard CD quality 44100 samples/sec this corresponds
to 54728 samples, which translates to a latency of 1.24 seconds.
At the Nyquist frequency this drops to 70 samples, or 1.59ms. In-
deed, if we slide in a single sample at a time, it will be about 1.24
seconds before a given sample hits the smaller bins.

However there is nothing to stop us moving where the frames
start analysing the samples. We can allow each frame to start at
an arbitrary offset, and could even allow the frame to move about
during the analysis2.

In the sequel we use the following notation and nomenclature:

• α: bin centre ratio, α = 1 + 1/Q

• bin: centred on an analysis frequency (indexed by k, with
frequency fminα

k)

• bin width: range of frequencies a bin covers (roughly
fminα

k−1/2 to fminα
k+1/2)

• frame: a set of contiguous samples contributing to a single
bin

• frame size: number of samples to compute the bin (Nk)

• window: a cosine-like operation on a frame to reduce smear-
ing

3. THE OFFSET FORMULAE

Table 2: Frames aligned to end at the same sample.

0 summing over these samples N − 1
low ←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
med ←−−−−−−−−−−−−−−−→
high ←−−−−−−→

Table 3: Frames aligned to their middles.

0 summing over these samples N − 1
low ←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
med ←−−−−−−−−−−−−−−−→
high ←−−−−−−→

Suppose frame k has an offset of sk. Then the constantQDFT
for bin k at time t is

Ft(k) =
1

Nk

Nk−1X
j=0

f(j + sk + t)e−2πijQ/Nk (1)

where Nk is the size of frame k.

2though probably this is not a terribly useful thing to do!

Sliding by one sample, at time t+ 1:

NkFt+1(k) =

Nk−1X
j=0

f(j + sk + t+ 1)e−2πijQ/Nk

=

NkX
j=1

f(j + sk + t)e−2πijQ/Nke2πiQ/Nk

= e2πiQ/Nk

 
Nk−1X
j=0

f(j + sk + t)e−2πijQ/Nk+

f(sk +Nk + t)e−2πiQ − f(sk + t)

!
(2)

Thus

Ft+1(k) = e2πiQ/Nk×„
Ft(k) +

e−2πiQf(Nk + sk + t)− f(sk + t)

Nk

«
(3)

In this, f(sk + Nk + t) is the new sample being slid in, while
f(sk + t) is the old sample moving out.

We now consider three particular cases; aligned left, centrally
and right.

3.1. Case sk = 0

The simple left-aligned constant Q sliding DFT corresponds to
setting all sk values to zero. The equation 3 then reduces to

Ft+1(k) = e2πiQ/Nk

„
Ft(k) +

e−2πiQf(Nk + t)− f(t)

Nk

«
(4)

This has the large latency for analysis of high frequencies, as
noted above, based on the window size of the lowest frequency.

3.2. Case sk = N −Nk

The other extreme case is when the different frequency frames are
right-aligned, as shown in figure 2. So if N is the length of the
longest frame we get that Ft+1(k) is

e2πiQ/Nk

„
Ft(k) +

e−2πiQf(N + t)− f(N −Nk + t)

Nk

«
(5)

where f(N+t) is the new sample (the same sample for all frames)
and f(N −Nk + t) is the oldest sample in each frame.

This has low latency for high frequencies and larger latency
for lower frequencies; the latency increases with the wavelength.

3.3. Case sk = (N −Nk)/2

The other potentially interesting case is to align all the windows
on the middle of the windows. This is the middle-aligned constant
Q sliding DFT, shown in figure 3:
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Ft+1(k) = e2πiQ/Nk× 
Ft(k) +

e−2πiQf(N+Nk
2

+ t)− f(N−Nk
2

+ t)

Nk

!
(6)

where again f(N+Nk
2

+ t) is the new sample, f(N−Nk
2

+ t) the
old sample.

This has a fairly high latency for high frequencies, but has the
advantage that all the frames’ midpoints are aligned so in some
sense they are all analysing the same part of the signal.

4. COMPUTATIONAL ASPECTS

The formulae look complicated, but the inner loop is simply

F[k] = exps[k]*(F[k] + (expm2piIQ*fx[sk + Nk]
- fx[sk])/Nk);

Where exps is an array of pre-computed complex exponentials,
expm2piIQ is a single pre-computed complex exponential, fx
the array of real input samples and F the output array of the com-
plex DFT. This loop can be trivially parallelised.
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Figure 1: Constant Q DFT

To show the advantage of a constant Q sliding DFT we con-
sider a signal constructed from a sum of sine waves of frequencies
of 100, 110, 120, 1000, 10000, 11000, 12000Hz. In figure 1 we
show the DFT of this signal. No windowing was used. The low
frequencies are as clearly separated as the high frequencies.
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Figure 2: Standard DFT

In contrast, Figure 2 shows the lower half of a 1024-sample
standard DFT of the same signal; the separation of the low fre-
quencies is totally missing.

It is also worth noting that with constant Q we do not get the
symmetry of the bins about the middle due to the complex conju-
gate and so there are no redundant bins.

The time to add one sample is proportional to the number of
bins. For quarter tone separations and a fmin = 27.5Hz, at sample

rate 44100Hz this is 232 bins. This is a considerable saving on
the regular SDFT, and the reduction of bins by a log makes the
computational cost similar to a more normal FFT analysis.

5. WINDOWING

In a SDFT any sample windowing to reduce smearing has to be
applied in the frequency domain, after the transform, as described
in [3]. For the constant Q variant this process is not so easy as in
the variable Q sliding variant. So let

FQt(k) =
1

Nk

Nk−1X
j=0

f(j + sk + t)e−2πijQ/Nk (7)

where we make Q explicit in F , and

FwQt(k) =
1

Nk

Nk−1X
j=0

wk(j)f(j + sk + t)e−2πijQ/Nk (8)

be the windowed transform, where wk(j) = a + b cos(2πj/Nk)
is a standard cosine window. Different values of the constants a
and b correspond to a range of common windowing methods. For
example, a = 1/2 and b = −1/2 is the von Hann window. For the
following we will restrict the discussion to single cosine windows.

So

NkF
w
Qt(k) =

Nk−1X
j=0

wk(j)f(j + sk + t)e−2πijQ/Nk

= a

Nk−1X
j=0

f(j + sk + t)e−2πiQ/Nk+

b

Nk−1X
j=0

cos(2πj/Nk)f(j + sk + t)e−2πiQ/Nk

= aNkFQt(k)+

b

Nk−1X
j=0

„
e2πij/Nk + e−2πij/Nk

2

«
f(j + sk + t)e−2πiQ/Nk

= aNkFQt(k)+

b

2

Nk−1X
j=0

f(j + sk + t)
“
e−2πij(Q−1)/Nk + e−2πij(Q+1)/Nk

”
= Nk

„
aFQt(k) +

b

2
FQ−1,t(k) +

b

2
FQ+1,t(k)

«
(9)

Thus

FwQt(k) = aFQt(k) +
b

2
FQ−1,t(k) +

b

2
FQ+1,t(k) (10)

Recall that the range of k, the number of bins, is typically
quite small, so it does not take much extra memory to keep all of
the FQt(k), FQ−1,t(k), and FQ+1,t(k) values. We do have extra
work in sliding the samples for all three transforms though. But
again it should be noted that this is all pathologically parallel.

Figure 3 shows the effect of adding a von Hann window to
the analysis of the synthetic signal used above. It greatly reduces
the response outside the target bins. Similarly, Figure 4 shows a
windowed transform of a simple square wave, showing clearly the
1/n drop-off.
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Figure 3: Windowed Constant Q DFT.
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Figure 4: Windowed Constant Q Sliding DFT of a Square Wave.

6. RESYNTHESIS

The SDFT can be represented as a matrix that maps samples into
frequencies (figure 5). Apart from a few edge cases, this matrix is
singular, having determinant zero. Thus we can not expect to be
able to reconstruct the exact signal as the SDFT does not retain all
the information in the original signal.

There have been attempts at reconstruction, such as Zhuo and
Micheli-Tzanakou[12] who uses a single (middle of window) point.
Realising the problems of the inverse, FitzGerald, Cranich and
Cychowski[13] approximates an inverse by minimisation techniques.

Figure 5: Example SDFT transformation: αs stand for various
roots of unity.

We have a kind of reconstruction:

f̂(t) =

BX
k=0

Ft(k)e
2πiQ/Nk (11)

where B is the number of bins. This is fast, as B is relatively

small, and all the e2πiQ/Nk are already precomputed as part of the
forward transform.

 0  200  400  600  800  1000

Time

Figure 6: Square wave and a reconstruction.

In practice, this reconstructed signal sounds remarkably sim-
ilar to the original. Figure 6 show a square wave and its recon-
struction using this formula. They are clearly quite different in
their phase content. However they sound almost the same: after
all, they have the same representation in the constant Q.

The utility of the transform can be seen from the original and
resynthesis of a slap-low bass guitar sound. In figure 7 we show
part of the wave-forms, which while not bit-accurate is very sim-
ilar. The latency of the process is also clear in this figure. The
spectral view in figure 8 emphasises the similarities.

Figure 7: Wave form of slap low bass.

Figure 8: Spectrum of slap low bass.

7. TRANSFORMATIONS

In implementing the sliding constant-Q transform we are at the
beginning of a journey through largely unexplored territory. The
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Figure 9: The Structure of Constant-Q: N per bin v bin frequen-
cies.
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Figure 10: Pulse-wave: Close-up of Bin frequencies v magnitudes.

contrast with the standard linear transform is stark. Figure 9 re-
lates the centre frequency of each bin to the number of samples to
which they correspond. The complementary exponential nature of
both parameters is obvious. Just as interesting is the shape of the
input magnitude response. Figure 10 illustrates a typical response,
together with the nominal centre frequencies for each bin. In the
conventional DFT (sliding or otherwise, we are used to seeing a
somewhat indistinct low frequency (LF) response, with increasing
resolution at high frequency. As expected, the sliding constant-Q
transform reverses this behaviour.

Figure 11 shows the result of an upwards pitch shift by 3 semi-
tones. Clearly the phases especially of the higher components are
disturbed (in some orderly way: there is a clear pattern to the vari-
ations; we expect further analysis will provide a simple formula
to describe this), but nevertheless it sounds very reasonable. Note
that while the latency is extreme because of the large Nmax, the
number of bins passed through the transformation is (in this case)
only 97, comparable more to a peak-tracked stream than to a stan-
dard DFT-based stream. Initial tests with music inputs demonstrate
a surprising degree of fidelity given such a small number of bins,
though much more work is needed to establish the determining
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Figure 11: Waveform of pitch-shifted pulse wave.

factors for high-quality transformations.
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Figure 12: Internal bin magnitudes representation of Figure 1.

Central to the use of the sliding constant-Q approach is the
simple pitch shifting algorithm enabled by the single-sample up-
date, as described in the SPV[2]. No bin reassignment is required;
the frequency value in each bin is simply scaled by the shift factor.
With reference to the test signal shown in figure 1, figure 12 shows
the internal magnitude values using the same settings used in fig-
ures 9, 10 and 11. Unsurprisingly, for a total of 97 analysis bins,
the three LF components appear as a single wide peak. However,
the spectrum of the pitch-shifted output (when calculated using a
suitably large FFT of at least 8192 points, not shown here) shows
that all components have retained their clear separation and fre-
quency relationship.

8. DISCUSSIONS

At this early stage of exploration, the sliding constant-Q transform
appears capricious, sometimes performing much as intended, and
at other times (as we have previously found with the linear slid-
ing phase vocoder) presenting plenty of intriguing and surprising
emergent features. We therefore hesitate to make any definitive
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claims at this stage about its usability for demanding audio work.
Instead, we confine ourselves to a number of general observations
which indicate likely routes of further investigation. The current
theoretical model presents the problem that the low frequencies
are in practice over-emphasised. This is reflected both in the very
large sample window (Nmax) required for those low frequencies,
and in the high ratio of Nmax to the number of analysis bins aris-
ing from the constant-Q conversion. Figure 9 offers a clue here —
the result of reducing that ratio would be equivalent to reducing the
gradient of the curves. In principle (and recalling the widely-used
Zoom transform in which just a few arbitrarily selected frequency
bins are calculated), we speculate that not only may “less expo-
nential” gradients be available, but perhaps even a combination of
curves not necessarily monotonic; this is similar to the proposals
by Brown and Puckette[11] and Härmaä et al.[7]. Our goal of
course is to be able to employ a much smaller overall transform
window of (say) 1024 samples, for low latency, while gaining the
LF resolution associated with larger FFT windows. This may lead
not to a single “ideal” constant-Q transform but to a family of
warped-constant-Q transforms (loosely analogous to families of
wavelets), which may be tuned by the user according to need.

In this respect we note that the current model achieves sur-
prisingly good results (though not yet ”pro quality”) even with a
very small number of analysis bins and with no attempt at phase re-
alignment for transients. This suggests (though it is contrary to our
primary interest in live performance) that the constant-Q transform
may find use as a pre-analysis process (which will then eliminate
all issues of latency) for use in samplers. The single sample update
offers musical advantages, while the data storage and bandwidth
requirements, though substantial, are much less than those for the
linear sliding phase vocoder and are by no means unsupportable
on modern platforms.

In our initial tests with music sources, we find that the em-
phasis on the low frequencies is not only analytically significant,
it can also manifest as a general sonic LF bias (bass boost). We
suspect therefore that the transform carries implications of con-
comitant EQ correction, if high-quality transformations are to be
achieved. It may also be that the suggested warped-constant-Q
approach will resolve this issue. The lossy nature of the process
suggests that the constant-Q transform is best applied to sources
that do not include significant broadband noise components such
as reverberation. However, a primary motivation for this work was
to find transformations effective on drums and general LF percus-
sion, sounds which demand both low latency and fine LF resolu-
tion. We are encouraged by our initial results in this direction.

In its present form, we use only the von Hann window in the
analysis stage (that window having proved to be the most effec-
tive in the linear Sliding DFT). However, the presence of signifi-
cant sidelobe-like artifacts in many of the transformations we have
tried suggest that other higher-order windows may be more ap-
propriate to the constant-Q transform. It is too soon to discount
the transform as a starting-point for a peak-tracking analysis, but
initial performance (as suggested by figure 12) currently indicates
against this application.

9. CONCLUSIONS.

The concept of the constant-Q Discrete Fourier Transform has
been known and talked about for many years, but efficient and
effective methods for calculation have been rare. In this paper we
remind the community that the Sliding Discrete Fourier Transform

 0  500  1000  1500  2000  2500  3000  3500  4000  4500  5000

Test signal pitch shift by 1.2

Figure 13: Test signal of Figure 1. Lower = input, upper = pitch-
shifted output.

is ideal for this. While it might have a daunting complexity of
O(n2) compared with the attractive O(n logn) of the FFT, by re-
ducing the number of computed bins by the logarithm it becomes
competitive. Added to this the pathologically parallel nature of the
algorithm suggests that a suitable application of vector processing
or multi-cell computers can remove the last concerns.

Our initial theoretical approach demands very large transform
windows, which contradict our goal of low latency. However the
results achieved with the very much smaller internal analysis win-
dows are most encouraging. A key goal for future work is reduc-
tion of this ratio, so that the expected advantages of low latency
and enhanced LF resolution can be realised. While computation-
ally demanding, the algorithm is, like the Sliding Phase Vocoder,
highly parallelisable, and (if the latency question can be resolved)
available to real-time implementation given suitable hardware. In
this respect we believe that the sliding constant-Q transform will
permit as wide a range of musical transformation as already iden-
tified for the SPV. The question of reconstruction remains moot —
while many uses for the analysis stage alone suggest themselves,
the inherently lossy nature of the transform means that while it is
suited to a wide class of sounds and artistic activities, it will not
apply to all. The full extent and seriousness of this limitation re-
mains to be determined.

This work was initially funded by the Arts and Humanities
Research Council, and continued with partial support from Clear-
speed plc; we wish to express our thanks to both of these for their
confidence.
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