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ABSTRACT

This study explores the potential of utilising certain prosodic qual-
ities of function-specific vocal expressions in order to design effec-
tive non-speech user interface sounds. In an empirical setting, ut-
terances with four context-situated communicative functions were
produced by 20 participants. Time series of fundamental frequency
(Fo) and intensity were extracted from the utterances and analysed
statistically. The results show that individual communicative func-
tions have distinct prosodic characteristics that can be statistically
modelled. By using the model, certain function-specific prosodic
cues can be identified and, in turn, imitated in the design of com-
municative interface sounds for the corresponding communicative
functions in human-computer interaction.

1. INTRODUCTION

Finding ways to produce intuitively communicative non-speech
sounds is a major challenge in the sound design for user interfaces.
An interface sound can be seen intuitively communicative if the
users’ unconscious application of previous experience facilitates
effective interaction [1]. One way to exploit our familiarity and
facility in experiencing the everyday world is to mimic the ways in
which we naturally use sound with social interactions. In addition
to linguistic means of expression, the human vocal communication
contains an important nonverbal channel. This affective content
of speech is conveyed by various prosodic cues, which refer cer-
tain characteristics in intonation, stress, timing and voice quality -
or by acoustic terms - in dimensions such as pitch, intensity and
spectrum. While many professional sound designers might tacitly
mimic various prosodic cues in their work, there is a definitive lack
of explicit knowledge of how certain prosodic characteristics are
related with the human meaning-creation.

Vocal expressions are in many ways dependent on the situ-
ational context in which they take place and which they serve.
Emotional and motivational states reflect the current situation and
provide various effects to the determinants of the vocalisation. A
wealth of evidence exists that emotional and intentional states are
communicated non-verbally through vocal expressions [2]]. The
ability to catch the emotional and motivational state of mind of
other people has been considered as crucial in forming and main-
taining social relationships [3]. The unveiling of emotional and
motivational states can also be utilised for manipulation and per-
suasion. The speaker also instrumentally uses the expression to
convey information to the others and to influence the communica-
tional process.
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Communicative functions of vocalisations refer to the commu-
nicative intentions of the speaker as well as to the vocalisation’s
pragmatic meaning. We suggest that the evoked functional mean-
ing'|of nonverbal vocal patterns is indicated by the empathetic per-
ception [5] of sound and its indexical relation to the situational
context. The dependency to the situational conditions may vary.
For example, an infant can perceive mother’s vocal patterns as pro-
hibitive in many different situations as long as the child is able to
associate the utterance with her actions. On the other hand, the
perception of certain functions may have more fine-tuned relation-
ships between the vocalisation and its context. Communicative
functions represent particular categories of vocal expression and
also certain contexts of interactions. In this study we will use this
term essentially to categorise certain context-specific communica-
tive intentions for using sound.

It is pointed out by several authors [3, 12} 6] that the basis of en-
coding and decoding of prosodic features in vocal communication
has a strong phylogenetic background. Such evolutionary perspec-
tive is supported e.g. by the evidence of cross-cultural prosodic
similarities in infant-directed speech [7]. It is hardly the case that
all codes related to nonverbal vocal expressions are "hard-wired"
into the human species. One can assume that several parts of the
coding consist of socio-culturally learned habits. But if the feature
determinants and non-verbally evoked meanings of vocal patterns
have even partial universality, these codes must be considered to
be serving as a source of common sound-meaning relations.

In order to utilise function-specific prosodic cues in sound de-
sign, one must identify such stereotyped cues in certain function-
related vocalisations. The goal of this study is to address this is-
sue in the context of collaborated sound design case with Suunto
Ltd., a Finnish company designing and manufacturing sports in-
struments. The aim of the case is to design user interface sounds
for training application in a wrist computer. One of the main func-
tions of the sounds within that type of interaction is to persuade
the user to control her running speed. Therefore the chosen com-
municative functions for this study were defined as "slow down"
(decrease speed), "urge" (increase speed), "keep this / OK" (cur-
rent speed is fine) and finally "reward" (positive cheer). Due to
the typical limitations of wrist devices’ sound output, the focus
of prosodic features is on frequency and intensity instead of spec-
tral qualities of the sounds. The research questions of this study
are: In context-situated controlled setting of trainer-runner inter-
action, will participants encode function-specific (communicative
functions mentioned above) vocal patterns in their utterances? And

ISee Tuuri et. al. [4]) for a discussion about the perspectives of sonic
meaning-creation.
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can we identify such discriminating prosodic cues by analysing the
patterns of fundamental frequency (Fo) and intensity?

2. METHOD

2.1. Participants

Vocalisations were gathered from a group of 20 Finnish-speaking
students and personnel of University of Jyviskyld. Of the partic-
ipants, 9 were male and 11 were female. The average age in the
group was 24.8 years (with SD of 2.8 years). The participants were
recruited from various departments of the university. Of these par-
ticipants, 55% were I'T-students, 25% were students of education
and 15% were music students. One of the participants belonged to
the university staff.

2.2. Experiment

The basic idea of the experiment was a controlled production task
for gathering context-situated utterances from participants by record-
ing them in a realistic setting. The prosodic content of those vocal
expressions is the dependent variable of the study. The primary
independent variable is the communicative function divided into
four distinct functions ("slow down", "urge", "keep this/ok" and
"reward").

To set different conditions for the usage of nonverbal means
in the expression, we also chose to use an additional modera-
tor variable which determines two different methods for vocali-
sations: Word condition is a verbal form of expression using speci-
fied words for each functionEl Vowel condition is a fully nonverbal
form of expression (using "a"-vowel for all the functions). For a
more detailed description of the experiment, see Tuuri and Eerola

18]

2.3. Pre-processing of material

In the experiment, each participant produced 10 takes under each
(Word and Vowel) condition. A take here refers to recorded vocali-
sations that a participant produced under a single function-specific
experimental trial. Due to the extra warm-up trials under "slow
down" and "urge" categories, one trial from both of these cate-
gories under both conditions were rejected resulting in a total of
16 takes (4 functions X 2 repetitions X 2 conditions) per par-
ticipant. The selection of the most relevant utterance from each
take was made by automatically marking out any undivided vocal-
isations in the material and then choosing and labelling the most
prominent vocalisation of each take. For this, an automatic mark-
ing was successfully implemented by using the sound intensity
based annotation feature in Praat 4.6 software [9]].

The extraction of the prosodic features from audio was car-
ried out using Praat software [9]. The fundamental frequency (Fo)
and the voice intensity (energy in dBs) was obtained for each utter-
ance using a 10 ms time-window. Even though the autocorrelation-
based pitch extraction generally yielded reliable estimation of Fo,
some utterances contained minor inaccuracies, mostly unwanted
jumps (octaves or fifths). These errors were corrected in Praat us-
ing its pitch editor and re-evaluated by playing back the synthe-
sised pitch contours simultaneously with the original utterances.

2Finnish and pseudo-Finnish words that were used to express different
communicative functions were "top" (for slow down), "hop" (for urge),
"pidé tdma" (for keep this / OK) and "jee" (for reward).

For all utterances, Fgs (in Hz) were converted into linear scale
using the pitch numbering convention of MIDI standard (C4 = 60).
Note that this scaling does not alter the resolution of the Fy as they
were not reduced to the integers of the MIDI note standard. Next,
the Fo contours were centred to MIDI note 60 (261.6 Hz) within
each participant to remove the obvious F differences between the
participants caused by gender, size, etc. For intensity, a similar
operation was carried out (centred to 70 dB).

3. RESULTS

We first investigated whether there were differences between the
repeated utterances each participant gave for each function and
condition. One-way ANOVA yielded no statistically significant
differences in the mean Fos (F[1,158] = 1.22, p=n.s.) or in mean
intensities (F[1,158] = 0.04, p=n.s.) and hence both utterances
are retained in the following analyses. This also suggests that
prosodic information is robust in communicating these functions
and minimally altered across repetitions in the experiment. Within
the scope of this paper, the subsequent analysis of prosodic fea-
tures for each function was carried out using solely the utterances
of Word condition.

3.1. Acoustic predictors

The utterances were summarised by 15 descriptors related to fre-
quency, intensity and length: means, standard deviations and slopes
were calculated for frequency and intensity of the utterances. Also
three periodicity measures of the frequency and intensity time-
series were computed to characterise the possible oscillatory pat-
terns of the utterances. For this, auto-correlation function was ap-
plied to the time-series, and the maximum amplitude and the pe-
riod at the maximum as well as the entropy of the auto-correlated
signal were used as descriptors of periodic patterns for frequency
and intensity contours. Finally, the proportion of unvoiced frames
within the utterances, the overall length of the utterances and mean
voiced segment length within the utterances were computed. These
predictors are listed in Table [I] This summary table also con-
tains an index (the ANOVA column) of the predictors’ ability to
discriminate the four communicative functions using an analysis
of variance and the subsequent posthoc test (Scheffé). The index
refers to the proportion of comparisons that gave a positive result
in this analysis (max. of 6 group comparisons). More advanced
descriptors such as the attack slope, spectral centroid or formant
variables could have been used as well, although we wanted to fo-
cus on frequency and intensity rather than on spectral measures,
as these are easily manipulated in applications with limited audio
generating capacities.

3.2. Classification using Regression Tree Analysis

As already shown by the ANOVA column of the Table [I} most
predictors demonstrate differences across the functions and few
can be observed to show differences between most of the group
comparison (Prop. of unvoiced frames, intensity measures). How-
ever, in order to better understand which combination of the avail-
able acoustic features contributes the most to the separation of the
four function categories, a classification approach was adopted. To
classify properly the utterances into four function-specific groups,
we chose to apply Regression Tree Analysis (RTA) [10]. RTA
constructs rules by recursively partitioning the observations into
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Table 1: Summary of predictors.

Nro Predictor ANOVA
1. Frequency (Mean) 4/6
2. Frequency (Standard deviation) 3/6
3. Frequency (Slope) 2/6
4. Frequency Periodicity (Max. ampl.) 3/6
5. Frequency Periodicity (Max. period) 3/6
6. Frequency Periodicity (Entropy) 0/6
7. Intensity (Mean) 5/6
8. Intensity (Standard deviation) 5/6
9. Intensity (Slope) 2/6
10.  Intensity Periodicity (Max. ampl.) 4/6
11.  Intensity Periodicity (Max. period) 3/6
12.  Intensity Periodicity (Entropy) 2/6
13.  Proportion of unvoiced frames 6/6
14.  Total length 3/6
15. Mean voiced segment length 3/6

ANOVA column displays the number of functions
that are statistically different at p <0.05 level
in Scheffé posthoc comparisons.

smaller groups based on a single variable at a time. These splits are
created to maximise the between groups sum of squares. The re-
sulting tree diagram initially has a large number of tree nodes (log-
ical i f-then conditions) which are pruned by cross-validation to
reduce the overfitting. This approach provides several advantages
over discriminant analysis (DA) or classical regression techniques:
it is able to uncover structures in observations which are hierarchi-
cal, it is nonparametric, and allows interactions and nonlinearities
between the predictors [11]. The rules that describe the splitting
into groups are also easy to interpret and provide insights into the
process of classification.

For the analysis, all predictors were checked for normality, and
those violating the normality assumption were transformed into
normal distribution using a Box-cox power transformation. How-
ever, 3 predictors (Prop. of unvoiced frames, Period maximum
amplitude and period measures in frequency) could not be success-
fully transformed. It should be noted, however, that this does not
pose problems for the RTA analysis. All predictors were converted
into z-scores and entered into the RTA analysis, which yielded
classification accuracy of 88.75% with 10-fold cross-validation in
which excessive tree nodes were trimmed. This final model had 3
nodes and 2 predictors, as displayed in Figure[T] Thus the Propor-
tion of unvoiced frames of the utterances was the most discrimina-
tive featureEl of the function-specific categories as it separates Re-
ward category from the other categories and further distinguishes
OK utterances from Slow down utterances. Moreover, Urge utter-
ances are also clearly separated by the higher mean frequency from
the other categories. This simple RTA model and the actual obser-
vations are visualised in Figure@). The smaller markers denote the
predictions by the model (the four areas marked by the RTA deci-
sion tree) and the larger markers represent the 160 observations
(20 x 2 utterances x 4 categories). Note that the Proportion
of unvoiced frames clearly has a non-normal distribution (a large
amount zeroes), which would have been problematic for classical
classification analyses. In figure[2] the utterances can be clearly be

30ne should interpret the Proportion of unvoiced frames in the classi-
fication as an index of segmented utterances which could consist of, for
example, series of short bursts of sound.

seen to cluster into distinct groups according to the Proportion of
unvoiced frames and mean frequency.

Prop. of unvoiced < 0.16
3 N
Mean F0 < 60.8
Prop. of unvoiced > 0.35

Figure 1: Decision tree based on the final, pruned and cross-
validated RTA model. Solid lines indicate the path taken when
arule is filled.

We also compared the results to those obtained with the linear
discriminant analysis using all 15 variables with a stepwise option
to trim the amount of variables according Rao’s V [12]. This anal-
ysis resulted in a 2 variable solution that correctly classified 88.8%
of the observations (without a cross-validation procedure). These
two variables were again the Proportion of unvoiced frames and
mean frequency. Hence similar results were demonstrated using a
more traditional technique.

Additionally, by using the RTA classification model we ex-
plored a set of the categorically best-ranking utterances (ranked by
the distance from the group centroids). These utterances should
be, according to the model, statistically the best representatives of
a given communicative function. As an example, one high-ranking
utterance of each communicative function (given from a single par-
ticipant) is shown in Figure 3] where the frequency and intensity
contours of utterances are visualised.
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Figure 2: Scatterplot of the two predictors (Mean frequency &
Proportion of unvoiced frames) that were able to classify most ut-
terances into the four function-specific categories. Note that the
original predictor values (not the z-scores) are displayed.
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Figure 3: Examples of the frequency and intensity contours for
each four functions from a single participant (Word condition).
Darker colour indicates higher dB (intensity) value.

4. DISCUSSION

The universal, everyday usage of prosodic cues in human com-
munication makes the prosodic information exceptionally poten-
tial source for common affective sound-meaning relations. In this
study we examined whether four different communicative func-
tions of vocal utterances would produce distinct function-specific
prosodic characteristics. The results demonstrate that the acous-
tic features of the utterances were highly successful in discrim-
inating the functions from each other. This indicates that these
vocalisations for four different communicative functions certainly
have specific prosodic qualities, which can, in turn, be imitated
in the design of user interface sounds of similar communicative
purposes. The acoustic descriptors were fairly simple, which we
interpret as an advantage, as these features of pitch and intensity
are easy to manipulate and generate in applications.

While this study sheds light on the characteristics of function-
specific prosodic cues, we admit that this is a halfway-result. Fur-
ther studies of the function-specific cues are needed in order to bet-
ter understand their role in meaning creation. For example, recog-
nition tests with listeners that will use synthesised sound examples
of prosodic features should be carried out in order to validate their
communicative attributes. Still, even with the limited knowledge
of stereotyped prosodic features, clear possibilities exist for utilis-
ing prosodic information as a basis of user interface sound design.

The prosody based sound design may be seen as a relative to
the design of auditory icons by Gaver [13]], as both share the same
idea of imitating familiar aspects of our everyday environment.
Iconic references to the original vocalisations should be consid-
ered in two levels: imitation of prosodic features and imitation of
communicative function. Hence, for the sake of functional match-
ing and as a natural part of interaction design, it is crucial to de-
fine the communicative functions (i.e., purposes) for every sound
occurring in the interaction. It is also important to note that the
prosodic encodings of sound engage primarily the listeners’ em-
pathetic and functional listening modes (i.e., levels of meaning-
creation, see [4]]), and they will not necessary rule out the concur-
rent usage of, for instance, symbolic codes or other types of iconic
resemblances. Prosody based sound design can thus be applied to
the design of many types of communicative sounds, and the sound

designer should be able to utilise it in tandem with other design
paradigms.
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