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ABSTRACT
This paper discusses compact-stencil �nite difference time domain
(FDTD) schemes for approximating the 2D wave equation in the
context of digital audio. Stability, accuracy, and ef�ciency are in-
vestigated and new ways of viewing and interpreting the results
are discussed. It is shown that if a tight accuracy constraint is ap-
plied, implicit schemes outperform explicit schemes. The paper
also discusses the relevance to digital waveguide mesh modelling,
and highlights the optimally ef�cient explicit scheme.

1. INTRODUCTION

Numerically solving the wave equation is of interest in a range
of audio-related contexts, including physics-based sound synthe-
sis and virtual room auralisation. The FDTD method has been
known for decades as one of the available numerical tools [1, 2]
and has been applied regularly as such (see, for example, [3, 4, 5]).
However in the `audio community', 2D and 3D acoustic systems
are more often modelled using the strongly related digital waveg-
uide mesh (DWM) approach. Given that DWM techniques as well
as the related wave-variable approach of multi dimensional wave
digital �lters [6] can be seen as sub-classes of the wider domain
of �nite difference methods [7], it can be argued that the most
comprehensive understanding of any of these methods can be ob-
tained by at least also viewing them from a FDTD perspective.
This notion is perhaps best exampli�ed by the fact that the �digital
waveguide mesh� was at its inception in [8] immediately analysed
using classic FDTD methods. Further support for this reasoning
is provided by the fact that there is a vast body of existing FDTD
literature to draw from, most of which was developed over the past
four decades in the context of electrodynamics.

The aim of this paper is to provide a better insight in the FDTD
approximation of the 2D wave equation, which is applicable to 2D
room modelling as well as to the simulation of non-stiff 2D res-
onators (i.e. membranes). As such we restrict ourselves to compact
schemes on a rectilinear mesh (i.e. schemes with stencils not wider
than 3 nodes in the discrete space-time domain), since higher-order
spatial and temporal approximation can massively complicate the
treatment of boundaries. This analysis covers a wide range of
well known methods, including the standard leapfrog scheme [1],
the standard rectilinear DWM [8], the interpolated DWM [9], as
well as implicit schemes [10]. The latter are not as well known
and far less used, probably because the computational costs of a
straight-forward implementation using matrixes is extremely ex-
pensive. However, a general family of compact schemes can be
de�ned that allows fast implementation using alternating direction
∗ This work was supported by the European Social Fund.

implicit (ADI) methods, which, depending on the relevant critera,
can lead to a signi�cantly improved ef�ciency in comparison with
standard explicit schemes, making implicit schemes an important
option for high sample rate audio applications [10].

The aforementioned family of compact schemes is investigated
in terms of stability, order of accuracy, and dispersion error, with
the focus mainly on the latter. Regarding dispersion, much of
the attention in the DWM literature has been on �nding isotropic
methods. Although some consideration to this concept is given
here, a larger emphasis is placed on minimising the general dis-
persion error rather than minimising its dependence on direction.
This choice stems from the authors' long-term objective of mod-
elling 2D and 3D acoustic systems (in particular acoustic spaces)
with moving sources and receivers, which excludes the use of off-
line frequency warping methods, such as those applied in [9, 11].

The analysis presented here includes a novel way of display-
ing the dispersion as a function of frequency and direction rather
than as a function of spatial frequencies (wavenumbers), which al-
lows a more intuitive and direct interpretation of the data. The
main results and conclusions of the paper are centered around how
particular cases within the family compare to each other in terms
of computational ef�ciency.

2. COMPACT FDTD SCHEMES

2.1. General Formulation

The general objective is the numerical solution of the wave equa-
tion in a two-dimensional (x, y) coordinate system:

∂2p

∂t2
= c2

„
∂2p

∂x2
+

∂2p

∂y2

«
, (1)

where p is the variable (that could for example be acoustic pressure
or membrane displacement), and c is the wave velocity. In the
ensuing formulations, the following discrete space-time domain
notations are used:

pn
l,m ≡ p(x, y, t)

˛̨
˛
x=lX,y=mX,t=nT

, (2)

δ2
t pn

l,m ≡ pn+1
l,m − 2pn

l,m + pn−1
l,m , (3)

δ2
xpn

l,m ≡ pn
l+1,m − 2pn

l,m + pn
l−1,m, (4)

δ2
ypn

l,m ≡ pn
l,m+1 − 2pn

l,m + pn
l,m−1. (5)

Using the centered �nite difference operators in Eqs. (3), (4), and
(5), a family of compact FD schemes approximating the wave
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equation can be formulated as follows [12]

[1 + a(δ2
x + δ2

y) + a2δ2
xδ2

y]δ2
t pn

l,m = λ2[(δ2
x + δ2

y)

+ bδ2
xδ2

y]pn
l,m,

(6)

where λ = cT/X is the Courant number, and a and b are free nu-
merical parameters. This formulation is consistent with the wave
equation for any real (a, b) (this is easily veri�ed using equations
(42), (43), and (44)), and the resulting scheme is implicit except for
a = 0. While a more generalised family of compact schemes is
possible [5], it is useful to restrict the analysis of possible implicit
schemes to those that can be factorised into two one-dimensional
implicit equations. In that case, an alternating direction implicit
(ADI) formulation exists, which allows a fast implementation us-
ing the Thomas algorithm for matrix inversion [1, 2]. In the light
of that constraint, the formulation in (6) is particularly useful since
it allows splitting into the following ADI form, which is more ef-
�cient than alternative splitting formulae [12]

(1 + aδ2
x)pn+1∗

l,m =
λ2

a
[−1 + (a− b)δ2

y]pn
l,m, (7)

(1 + aδ2
y)δ2

t pn
l,m = pn+1∗

l,m +
λ2

a
(1 + bδ2

y)pn
l,m, (8)

where pn
l,m is the update variable and pn+1∗

l,m is an intermediate
value.

2.2. Single-Frequency Plane-Wave Solutions

Many standard methods for analysis of FDTD schemes are based
on examining single-frequency plane-wave solutions. Consider
such a wave travelling at position x′ along an axis that cuts the
Cartesian x-axis at an angle θ. In the continuous space-time do-
main, solutions of this kind can be written

p(x′, t) = p0 este−jkx′ , (9)

where p0 is a real-valued amplitude value, s = σ + jω denotes
complex frequency, and k is the wavenumber. Using the coordi-
nate rotation x′ = x cos(θ) + y sin(θ), this becomes

p(x, y, t) = p0 este−jkxxe−jkyy, (10)

where kx = k cos θ and ky = k sin θ. In the discrete space-time
domain, the single-frequency plane-wave solution is:

pn
l,m = p0 esnT e−jk̂xlXe−jk̂ymX , (11)

where k̂x and k̂y denote the effective numerical wavenumbers,
which differ from the continuous-domain wavenumbers and are
related to a wavenumber k̂ associated with the propagation direc-
tion along the x′-axis by

k̂2 = k̂2
x + k̂2

x. (12)

For solutions of this form, the approximation in (3) can be written

δ2
t pn

l,m =
`
z − 2 + z−1´ pn

l,m,

= −4 sin2(ωT/2) pn
l,m, (13)

where z = esT , which represents the classic relationship between
the s- and the z-domain found in DSP literature. Hence by the
z-transform shift theorem, we have

pn+1
l,m = z pn

l,m, (14)
which is easily veri�ed by substituting both sides of Eq. (14) with
the form of Eq. (11). Similarly, under the assumption of single-
frequency plane-wave solutions the spatial approximations in (4)
and (5) can be written

δ2
xpn

l,m = −4 sin2(k̂xX/2) pn
l,m, (15)

δ2
ypn

l,m = −4 sin2(k̂yX/2) pn
l,m. (16)

2.3. Von Neuman Stability Analysis
Classic von Neumann stability analysis investigates an FDTD scheme
for solutions of the form of Eq. (11), and seeks to establish a bound
on λ such that no growing solutions exist [1, 2]. From (14) it is
clear that any scheme is unstable for |z| > 1, hence the necessary
stability condition can be expressed as |z| ≤ 1. By substituting
(13), (15), and (16) into (6), the following equation in z can be
obtained:

z + 2B(sx, sy) + z−1 = 0, (17)
where following [5] we introduce the new variables

sx = sin2(k̂xX/2), (18)

sy = sin2(k̂yX/2), (19)
and where

B(sx, sy) = 2λ2F (sx, sy)− 1, (20)
with

F (sx, sy) =
sx + sy − 4bsxsy

1− 4a(sx + sy) + 16a2sxsy
. (21)

In FDTD literature, Eq. (17) is known as the ampli�cation equa-
tion or the ampli�cation polynomial. The moduli of its two so-
lutions have to be smaller than or equal to unity for any combi-
nation (sx, sy) and thus any combination (k̂x, k̂y). Since sx and
sy are periodic with π, it is suf�cient to consider only real-valued
wavenumbers in the range −π/X ≤ k̂x, k̂y ≤ π/X . We note
that k̂x and k̂y can also become complex-valued [13], but in that
case only the real part has to be taken into account with regard to
stability analysis. From (17), it can be shown that |z| ≤ 1 when

B2(sx, sy) ≤ 1 (22)
which yields the bound on λ:

λ2 ≤ 1

Fmax(sx, sy)
(23)

For any (a, b) the function F (sx, sy) reaches its maximum at one
of its extrema, where sx, sy ∈ [0, 1], thus

Fmax = max

„
1

1− 4a
,

2− 4b

1− 8a + 16a2

«
(24)

Therefore the necessary stability condition for the scheme in (6) is

λ2 ≤ min

„
1− 4a,

1− 8a + 16a2

2− 4b

«
. (25)

Since λ2 must be positive, it follows from (25) that we have the
auxiliary constraints:

a ≤ 1

4
, b ≤ 1

2
. (26)
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2.4. Numerical Dispersion

If we re-arrange (17) to

z − 2 + z−1 = −4λ2F (sx, sy), (27)

and, using (13), substitute z−2+ z−1 = −4 sin(ωT/2), then the
dispersion relation results:

sin2(ωT/2) = λ2F (sx, sy). (28)

The frequency for (sx, sy) is therefore

ω =
2

T
arcsin

“
λ
p

F (sx, sy)
”

. (29)

The relative phase velocity, de�ned as the ratio of the effective
numerical wave speed ĉ = ω/k̂ over the real wave speed c, is a
useful measure of numerical dispersion. Using (29) and (12), one
obtains

v(k̂x, k̂y) =
ω

k̂ c
=

2arcsin
“
λ
p

F (sx, sy)
”

λ

q
(k̂xX)2 + (k̂yX)2

. (30)

2.5. Axial Phase Velocity

Consider now wave propagation in one of the four axial directions,
where k̂a denotes the wavenumber. Then we have either

n
k̂2

x =

k̂2
a, k̂2

y = 0
o

or
n

k̂2
x = 0, k̂2

y = k̂2
a

o
, which in both cases allows

writing the variable F as a function of the axial wavenumber:

F (k̂a) =
sin2(k̂aX/2)

1− 4a sin2(k̂aX/2)
. (31)

Then from Eq. (28), the axial wavenumber can be written as a
unique function of frequency:

k̂a(ω) =
2

X
arcsin

s
sin2(ωT/2)

λ2 + 4a sin2(ωT/2)
, (32)

and �nally the relative phase velocity in axial directions can now
also be written as a function of frequency

va(ω) =
ω

k̂a(ω) c
=

(ωT/2)

λ arcsin
q

sin2(ωT/2)

λ2+4a sin2(ωT/2)

. (33)

2.6. Diagonal Phase Velocity

In diagonal directions, we have k̂2
x = k̂2

y = k̂2
d/2 (subscript d de-

noting diagonal directions), which allows writing F as a function
of the diagonal wavenumber:

F (k̂d) =
2G(k̂d)− 4bG2(k̂d)

1− 8aG(k̂d) + 16a2G2(k̂d)
, (34)

where G(k̂d) = sin2(
√

2k̂dX/4). Forcing the dispersion relation
in (28) and writing G as a function of frequency yields

G(ω) =
4ast − λ2 −

p
(8a− 4b)λ2st + λ4)

16a2st + 4bλ2
, (35)

where st = sin2(ωT/2). Using the de�nition of G, we may then
write the diagonal wavenumber as a function of frequency:

k̂d(ω) =
4√

2X arcsin
p

G(ω)
. (36)

Finally, the relative wave velocity in diagonal directions as a func-
tion of frequency becomes

vd(ω) =
ω

k̂d(ω) c
=

q
1
2
(ωT/2)

λ arcsin
p

G(ω)
. (37)

2.7. Cut-Off Frequencies
The function f(x) = arcsin(x) becomes complex-valued when
x > 1. Hence from (32), the axial wavenumber becomes complex-
valued if

sin2(ωT/2)

λ2 + 4a sin2(ωT/2)
> 1, (38)

which can be simpli�ed to

ωT > 2 arcsin

„
λ√

1− 4a

«
. (39)

For frequencies above this `cut-off' frequency, waves are evanes-
cent, and resonances are not sustained [13]. Such a cut-off fre-
quency in fact exists for all propagation directions, and can be
found by considering for which frequencies the dispersion rela-
tion in (28) can be satis�ed only for complex-valued wavenum-
bers, which yields:

ωT > 2 arcsin
“
λ
p

Fmr(θ
”

. (40)

where Fmr(θ) is the maximum value of F (sx, sy) for a pair of
real-valued wavenumbers for which the angle of propagation is θ:

Fmr(θ) =


F (1, sin2(π/2 tan θ), | tan θ| ≤ 1
F (sin2(π/2 tan θ), 1), | tan θ| > 1

(41)

2.8. Order of Acuracy
Truncating to fourth order the Taylor expansions about the point
(x, y, t) of the difference operators in Eqs. (3), (4), and (5) yields:

δ2
t = T 2 ∂2

∂t2
+

T 4

12

∂4

∂t4
+ O(T 4), (42)

δ2
x = X2 ∂2

∂x2
+

X4

12

∂4

∂x4
+ O(X4), (43)

δ2
y = X2 ∂2

∂y2
+

X4

12

∂4

∂y4
+ O(X4). (44)

Substitution of the above equations into the general scheme of (6)
and applying the required successive substitutions of derivatives
according to the modi�ed equation method [14, 5] then allows ex-
pressing the overall numerical error or modi�ed equation error as

E(p, a, b, λ, X) = −c2

"„
a +

λ2 − 1

12

«
∂4p

∂x4

+

„
b− 1

6

«
∂4p

∂x2∂y2

#
X2 + O(X4).

(45)
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Figure 1: Compact FDTD Stencils. For each type of stencil, the middle node at time (n+1) is updated using the remaining black-coloured
nodes.

3. ANALYSIS OF SPECIAL CASES

Table 1 lists seven special cases of compact schemes. The standard
leapfrog (SLF) scheme is mathematically equivalent to the rectilin-
ear digital waveguide mesh [8], and has exactly the same disper-
sion relation as Yee's classic FDTD scheme [15, 2]. As explained
in [5], the rotated leap fog (RLF) scheme can be interpreted as ap-
plying standard centered �nite operators along the diagonals rather
than the horizontal and vertical axes. One could say that the RLF
stencil is 45o rotated in comparison to the SLF scheme; both use
a �6-point stencil� in the space-time grid to update the new value
at time (n + 1) (see Fig. 1). Linear combinations of the SLF and
the RLF also exist, which result in a 10-point update stencil (see
Fig. 1). Such schemes, for which a = 0 and 0 < b < 1

2
, have

been referred to as `interpolated schemes' [5]. We have listed two
special cases of interpolated schemes in Table 1. As a reference to
other studies, it is useful to point out that the interpolated scheme
with b = 1

6
and λ =

p
1
2 is nearly equivalent to the interpolated

digital waveguide mesh [10], the latter having b = 0.1879.

Table 1: Special cases of compact FDTD schemes.

scheme a b stability bound
SLF 0 0 λ ≤p 1

2

RLF 0 1
2

λ ≤ 1

INT(1/4) 0 1
4

λ ≤ 1

INT(1/6) 0 1
6

λ ≤p 3
4

MFI 1
4
− 1

2
√

3

1
6

λ ≤ 1

FOA 1−λ2

12
1
6

λ ≤ √
3− 1

OPT 0.0492 0.228 λ ≤ 0.77

The remaining special cases in Table 1 are implicit schemes,
which use a 26-point update stencil (see Fig. 1). The maximally
�at isotropic (MFI) scheme is the scheme for which the difference
between axial and diagonal relative phase velocity is maximally
�at. Such a scheme is particularly useful when the aim is to apply
(off-line) pre- and post-warping techniques in order to remove as
much as possible any direction-independent numerical dispersion,
such as those presented in [9].

The implicit scheme with a = 1−λ2

12
and b = 1

6
, originally

identi�ed in [16], de�nes a subgroup of schemes within the familiy

of Eq. (6) of fourth-order accuracy (FOA), as can be seen directly
from Eq. (45).

The OPT scheme is an optimisation example, that is compu-
tationally most ef�cient under the criterion that the relative phase
velocity error should not exceed 1% within any speci�ed band-
width (see Sec. 3.2).

3.1. Relative Phase Velocity

In Fig. 2, the relative phase velocity, as calculated with (30), is
plotted as a function of the wavenumbers. What can be imme-
diately observed from these plots is how `isotropic' a particular
scheme is. For example, the INT(1/6) scheme (results plotted for
both λ2 = 0.75, which is the stability bound, and λ2 = 0.5,
which coincides with the interpolated digital waveguide mesh) and
the MFI scheme are far more `round' than the other special cases.
Note that the MFI scheme is the most isotropic of the three.

What is dif�cult - if not impossible - to determine from these
plots is the numerical dispersion at a certain frequency. In some
studies [11, 17], a circle is drawn on plots of this type with the in-
tention of indicating the �highest normalised temporal frequency�.
Unfortunately this does not work, since the wavenumbers (spatial
frequencies) are not proportional to the temporal frequencies (this
follows straight from the dispersion relation).

It is however possible to convert a set of wavenumbers (k̂x, k̂y)
to frequency ω (using Eq. (29)) and angle of propagation θ. This
way `polar plots' of the relative phase velocity can be generated,
where the polar radius corresponds to (normalised) frequency and
the polar angle indicates the direction (see Fig. 3). Now we may
draw circles on the plot in order to indicate particular frequen-
cies. These plots also immediately reveal the cut-off frequency
for any direction (beyond which waves in the discrete system are
evanescent and dispersion is of highly reduced relevance). As can
be seen, only the INT(1/4) scheme �lls the complete bandwidth
up to Nyquist for all directions, while the SLF, the RLF, and the
INT(1/6) with λ2 = 0.5 have the most `severe' cut-off frequen-
cies.

It can also be observed from Fig. 3 that the FOA and the OPT
scheme have the largest bandwidth in which the numerical disper-
sion remains relatively small. Amongst the explicit schemes, the
INT(1/6) (with λ2 = 0.75) and the INT(1/4) scheme perform rel-
atively well in that regard.

A general observation that can be made is that the highest nu-
merical dispersion consistently occurs in either the axial or the di-
agonal direction. Hence perhaps the most useful and informative
is to plot the relative phase velocity only for these directions, as
depicted in Fig. 4. This allows better to observe the exact value of
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Figure 2: Relative phase velocity as a function of x- and y-direction wavenumbers. The darkness in the plots indicates the relative phase
velocity error, where white indicates a zero error, and any error larger then or equal to 0.3 is represented with black.

the relative phase velocity, and for example reveals more clearly
that va exceeds unity for the OPT scheme.

3.2. Computational Ef�ciency

While the relative phase velocity is a useful indicator of the char-
acteristics of a scheme, the plots in Figs. 2, 3, and 4 do not allow a
direct interpretation of how ef�cient they are in comparison. This
is mainly because they use different Courant numbers. While some
insight can be gained from comparing schemes for equal Courant
numbers (see, for example, [5]), it seems more informative to re-
strict any comparisons to schemes at their highest possible value
of the Courant number (provided that λ ≤ 1), since that is when
the numerical dispersion is generally the lowest. In order to in-
vestigate the dependence of computational ef�ciency on the free

parameters (a, b) (with λ chosen at the stability bound), the effect
of different λ values has to be taken into account.

In an audio context, one often requires precise results over a
speci�ed bandwidth. For example, in room acoustics applications
the dispersion error should ideally be kept low up to the highest
available frequency, as otherwise compact wavefronts are smeared
out over time, which is likely to affect the capability of the listener
to localise sources. Thus a suitable metric for computational costs
de�ned as the amount of computation required in order to obtain
a certain accuracy over a certain bandwidth1. For the purpose of

1For membrane synthesis, it might make more sense to use a different
metric that allows the error to increase with frequency, since dispersion
at high frequencies are not that relevant in that scenario. However, the
conclusions regarding explicit schemes are actually generally applicable,
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Figure 3: Relative phase velocity as a function of frequency (polar plot radius) and propagation angle (polar plot angle). In each plot,
starting from the most inner circle, the dotted-line circles indicate f = ( 1

8
, 1

4
, 3

8
, 1

2
)fs.

comparing the schemes in that sense, let's specify this as

the computational density required such that the de-
viation of the relative phase velocity from its ideal
unity value is not larger than a critical error ec up
to a critical frequency ωc.

As a �rst indication, we may de�ne the computational density sim-
ply as the number of nodal updates per square meter per second.
This enables direct comparison between schemes that use exactly
the same nodal update computations, such as all implicit schemes.
Using this de�nition of computational density, we can de�ne the

and although we have not explictly addressed alternative metrics, some
tentative conclusions regarding implicit schemes could also be made for
the separate case of membrane synthesis on basis of the analysis presented.

following metric of relative ef�ciency:

ε(a, b, ec) =
ρnu(0, 0, ec, ωc)

ρnu(a, b, ec, ωc)
, (46)

where ρnu(a, b, ec, ωc) denotes the computational density for scheme
(a, b) that meets the criterion (ec, ωc) and ρnu(0, 0, ec, ωc) is the
reference (SLF) scheme that we normalise by. Note that while ρnu

depends on the critical frequency, ε does not.
The value of ρnu is calculated by �rst determining the sam-

pling frequency required to meet the accuracy criterion, for which
Eqs. (33) and (37) can be used. This involves �rst determining
the (normalised) frequencies ωaT and ωdT at which |1− va| and
|1 − vd| are equal to ec. Because (33) and (37) are not directly
invertable, this has to be done using optimisation methods. Once
these critical frequencies have been found, the required sample rate
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Figure 4: Relative phase veloctiy for axial directions (top), and
diagonal directions (bottom).

is calculated as fs = ωc
min(ωaT,ωdT )

. The required spatial step X

is then obtained directly from λ = (cT )/X . The required nodal
density is thus ρn = X−2 nodes per m2, and the required com-
putational density (as in the number of nodal updates per m2 per
second) is ρnu = fs

(X)2
.

Calculations of ε(a, b, ec) have been performed for a large set
(a, b) and a range of ec values. An example result (ec = 1%) is
plotted in Fig. 5.

Table 2: Relative Ef�ciency ε(ec).

scheme ε(10%) ε(1%) ε(0.1%) ε(0.01%)
SLF 1.00 1.00 1.00 1.00
RLF 0.50 0.50 0.50 0.50
INT(1/4) 4.00 4.00 4.00 4.00
INT(1/6) 2.16 3.23 3.44 3.46
MFI 2.08 1.65 1.59 1.58
FOA 2.42 12.3 71.4 408
OPT 3.50 41.9 5.10 4.91

Table 2 shows the relative ef�ciency of the special cases at
their top Courant number for ec = 10%, 1%, 0.1%, and 0.01%.
Note that one cannot directly compare values of different columns.
Direct comparison is also not possible between schemes that use
different amounts of nodes in their stencil, since this is not taken
into account in the calculations. However, some important con-
clusions regarding such comparisons can still be drawn without
getting into the messy business of counting FLOPS:

• A nodal update with an interpolated scheme requires only
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Figure 5: Relative ef�ciency (plotted as log2 [ε(a, b, ec)]) for ec =
0.01. The optimal scheme lies in the white area. For any combina-
tion of the free parameters (a, b), the Courant number was chosen
at the stability bound.

a fraction of additional arithmetics in comparison with the
SLF or the RLF scheme [10]. Hence it follows that the
INT(1/4) is nearly 4 times more ef�cient than the SLF for
any possible value of ec.
• Inspection of results along the line a = 0 reveals the
remarkable notion that amongst the explicit schemes, the
INT(1/4) is always the optimally ef�cient scheme, regard-
less of the choice of ec.
• Regarding implicit schemes (which all require exactly the
same computational costs per nodal update for a given ADI
implementation), the FOA scheme is the most ef�cient op-
tion, except when the cricital error is high, in which case a
signi�cant better scheme can be found via optimisation.
• As for comparing explicit schemes with implicit schemes,
the computational costs of the ADI method per nodal up-
date is roughly twice as much as that of explicit schemes
[10]. Therefore it can be concluded that an implicit scheme
that is more ef�cient than any explicit scheme can almost
always be found, except if the critical error is chosen very
high (ec > 2%).

Additional insight can be gained by marking the positions of
the various schemes on a map of the (a, b) domain (see Fig. 6).
The solid line indicates the positions of optimised schemes when
varying the critical error from ec = 10% to ec = 0.01%. The FOA
scheme can be seen as the optimal scheme for ec → 0, and has the
`maximally �at' phase velocity error. Another interesting point is
that the FOA scheme with λ at its top value uses a = − 1

4
+ 1

2
√

3
,

thus is the `mirror-image' of the MFI scheme in the (a, b) domain.

4. CONCLUSIONS

Compact FDTD schemes describe a useful group of �nite dif-
ference methods and related techniques for simulation of acous-
tic systems governed by the wave equation. While considerable
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Figure 6: Positions of schemes in the (a, b) domain. The solid line
indicates the positions of schemes found by optimising ef�ciency
under the criterion of a speci�ed bandwidth in which the phase
velocity error does not exceed a crital error.

ground on this topic had been covered previously (in particular in
[5, 18]), this paper has added and highlighted the following in-
sights:

A useful subgroup of all possible compact schemes was cho-
sen, that allows a particularly ef�cient ADI implementation (which
appears to fall outside the `ADI region' de�ned in [5]).

New ways of formulating and plotting the relative phase veloc-
ity were presented, such that its dependence on frequency can be
interpreted immediately; these methods also allow direct assess-
ment of the `cut-off' frequency for any direction, which is partic-
ularly important in a digital audio context.

A new scheme (MFI) was identi�ed that is more isotropic than
the interpolated waveguide mesh, thus providing a useful alterna-
tive for applications that involve frequency warping.

A way of comparing schemes in terms of computational ef-
�ciency was formulated, using nodal update density as the main
metric, and taking into account the variation of λ amongst the
schemes. Using this ef�ciency formulation, and applying a spe-
ci�c accuracy criterion that is logical in a digital audio context,
it has been shown that implicit schemes are generally signi�cantly
more ef�cient than explicit schemes, except when a weak accuracy
criterion is applied.

It was also shown that amongst explicit schemes, the interpo-
lated scheme with b = 1

4
is the optimally ef�cient scheme, and

about four times more ef�cient than the standard leapfrog scheme
(which is equivalent to the rectilinear digital waveguide mesh). It
follows that, unless the aim is to apply frequency warping tech-
niques in simulation scenarios with static sources and receivers,
this should always be the choice of scheme if explicitness is nec-
essary or desirable.
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