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ABSTRACT

Characteristics of digitalwaveguide meshes with more than three
physical dimensions are studied. Especially, the properties of a
4-D mesh are analyzed and compared towaveguide structures of
lower dimensionalities. The hypermesh produces a response with
a dense and irregular modal pattern at high frequencies, which is
beneficial in modeling the reverberation of rooms or musical in-
strument bodies. In addition, it offers a high degree of decorre-
lation between output points selected at different locations, which
is advantageous for multi-channel reverberation. The frequency-
dependent decay of the hypermesh response can be controlled us-
ing boundary filters introduced recently by one of the authors. Sev-
eral hypermeshes can be effectively combined in a multirate sys-
tem, in which each mesh produces reverberation on a finite fre-
quency band. The paper presents two hypermesh application ex-
amples: the modeling of the impulse response of a lecture hall and
the simulation of the response of a clavichord soundbox.

1. INTRODUCTION

The hyperdimensional digitalwaveguide (DWG) mesh is a 4-D
version of the algorithm introduced by Van Duyne and Smith [1,
2]. There have been plenty of applications of the DWG mesh tech-
nique, but they have been limited to maximally three dimensions.
1-D digitalwaveguides are mostly used for simulatingwavepropa-
gation in strings and tubes [3, 4, 5], 2-D meshes are applied in plate
or membrane simulations [6, 7, 8, 9, 10], while rooms and reso-
nant bodies of musical instruments are modeled with 3-D meshes
[11, 12, 13, 9, 14, 15, 16]. Researchers have also modeled resonant
objects and spaces with meshes having the number of dimensions
different from that of the modeled object. For example, 2-D DWG
meshes have been employed in room acoustic modeling [17, 18].
Recently, Mullen et al. have shown that a 2-Dwaveguide is an ef-
fective tool for simulating narrow acoustic tubes, which essentially
contain a 1-D acoustic field [19].

∗ This work was funded by the Academy of Finland (project no.
201050) and the Nokia Foundation. The authors would like to extend their
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data, to Dr. Cumhur Erkut and Dr. Mikael Laurson for the clavichord
recordings, and to Mr. Seppo Paulin for Fig. 4.

The idea of the hyperdimensional mesh was mentioned al-
ready in the original 2-D DWG mesh paper by Van Duyne and
Smith [1], and later suggested again, for example, by Savioja et
al. [11] and Rocchesso and Smith [20]. We recently published the
first study about a 4-D DWG mesh [26]. In this paper, we inves-
tigate the properties of the 4-D mesh and possibilites opened by it
through practical examples. Special emphasis is on employing the
technique on reverberation modeling.

Artificial reverberation is widely used in musical performances
and recordings. In addition to its use as an effect or in room acous-
tic simulation, reverberation modeling is needed in the synthesis of
musical instruments with a resonating body, such as the soundbox
or soundboard of stringed keyboard instruments.

This paper is organized as follows. Section 2 discusses the
normal modes of vibration in enclosed spaces. In Section 3, the
hyperdimensional DWG mesh, or the hypermesh for short, is dis-
cussed as an extension to the previously knownwaveguide mesh
methods. Section 4 describes the application of the hypermesh in
two cases of artificial reverberation: simulation of a lecture hall’s
impulse response and simulation of the soundbox of a musical key-
board instrument.

2. NORMAL MODES IN ENCLOSURES WITH RIGID
BOUNDARIES

Sound pressurewavesreflect from boundaries, such as walls and
furniture in a room. When the time interval between successively
received reflected sounds is short, they are perceived as reverber-
ation instead of individual echoes. In any closed space, sound is
reflected along multiple closed propagation paths, and thus stand-
ing wavesoccur. The standingwavesdetermine the modal struc-
ture in the frequency response of the acoustic system. At low fre-
quencies, the modes are sparsely spaced in frequency, but at fre-
quencies above a critical frequency, often called the Schroeder fre-
quency, the modal peaks are not distinguished individually by the
ear [21, 22]. If the modal density created by an artificial reverbera-
tion algorithm is too low in this high frequency region, tonality or
a metallic timbre is perceived.

Sound pressure between two rigid boundaries located atx = 0
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andx = L must fulfill the boundary condition

dp

dx
= 0. (1)

The sound pressure value at a certain modal frequency at any point
is given by a solution for (1) that can be written as

p(x) = Acos(knx), (2)

whereA is an arbitrary coefficient,kn = nπ/L, andn = 0, 1, 2, . . .
is the integer index of the current mode along dimensionx having
corresponding lengthL [22].

The 1-D solution can be extended toN dimensions, where
the sound pressure value at point (x1, x2, . . . , xN ) inside theN -
dimensional rectangular space at a certain modal frequency is

pn1n2...nN (x1, x2, . . . , xN) = B
N�

i=1

cos(knixi), (3)

whereB is an arbitrary coefficient andni are the mode index num-
bers for each dimension. The modes appear at frequencies

fn1n2...nN =
c

2π
kn1n2...nN , (4)

wherec is the sound velocity. The constantkn1n2...nN is a com-
bination of allkni :

kn1n2...nN = π

�
N�

i=1

�
ni

Li

�2
�1/2

, (5)

whereLi is the spatial length alongith dimension.
The first axial standingwavealong each dimension withni =

1 has a frequency whose correspondingwavelength is equal to
twice the trajectory length. Other standingwaves on thesame tra-
jectory are created at multiples of this base frequency. In addition
to these 1-D modes occurring between parallel boundaries, multi-
dimensional standingwaves aresupported as closed propagation
paths are created between multiple boundaries. For these diagonal
and oblique modes, two or more indices have values above zero,
respectively.

The modal frequencies are inversely proportional to the tra-
jectory length, so, for example in large halls the modes start from
lower frequencies than in small rooms. The modal density also in-
creases with frequency, as suggested by (4) and (5). Actual rooms
and halls are not perfectly rectangular and have furniture and other
objects affecting sound propagation. So the trajectory lengths are
not equal at all frequencies. More propagation trajectories are sup-
ported, especially at high frequencies, resulting in an even denser
and inharmonic modal structure. In more complex shapes, such
as fan-shaped rooms or bodies of musical instruments, the modal
structure is too complex to be managed in closed form expres-
sions. Instead, numerical approximations of thewavepropagation
are needed.

3. DIGITAL WAVEGUIDE MESH METHOD

The DWG mesh provides a computational model for multi-dimensional
wavepropagation. It was created as an extension of 1-D digital
waveguides popular in the physical modeling-based sound synthe-
sis applications [1, 23]. A 1-D DWG consists of two delay lines
passing signals into opposite directions and scattering junctions

p1

p

p

pk2 4

3

p

Figure 1:A two-dimensional rectilinear DWG mesh structure.pk

is the junction currently calculated andpl, wherel = 1, 2, 3, or 4,
are its axial neighbors as in (8).

between the delay lines. The input signal to a junction can be
passed through, partially transmitted, or reflected back.

The mesh can be constructed in various ways. The choice can
be made between two different variable types and multiple topolo-
gies. Common to all DWG mesh schemes is the regular discretiza-
tion, both in time and in space.

3.1. The digital waveguide mesh updating functions

A DWG mesh consists of bidirectional delay lines and scattering
junctions connecting them at regular nodal points. For example, a
2-D DWG mesh structure is shown in Fig. 1. In a homogeneous
N -dimensional mesh each junction has2N neighbors, and all in-
terconnections have equal impedances. If the delays are located
at the interconnections of the nodes, the updating function of each
junction is written as

pk(n) =
2

N

�
l

p+
l (n), (6)

wherep+
l (n) are the incomingwave variable values of each inter-

connectionl of the current junction at time instantn. The outgoing
values are then updated using the current junction valuepk:

p−
l (n) = pk(n) − p+

l (n). (7)

The outgoing values are transformed into ingoing values of neigh-
boring junctions when they are passed by the unit delays in the
interconnections during the next computational time step. This
formulation of the mesh is called thewave variable formulation,
or W mesh.

Another formulation of the same functionality uses physically
measurable variables instead of their travelingwavedecomposi-
tion, as used in (6) and (7). In the so-called Kirchhoff formulation,
or K mesh, the delays are located at the nodal points of the mesh,
and the updating function of each junction is written as

pk(n) =

�
l pl(n − 1)

N
− pk(n − 2), (8)

wherepl are now the values of the neighboring junctions. While
being numerically less robust, in multi-dimensional models this
formulation requires considerably less main system memory than
an equivalent W mesh [24].
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The sampling frequency is related to the dimensionalityN of
the mesh by

fs =
c
√

N

∆x
, (9)

wherec is the wavepropagation speed in the mesh and∆x is the
spatial sampling interval corresponding to the distance between
two neighboring junctions [13]. The practical frequency band-
width for the mesh depends on its geometric topology [25]. For
example, a triangular mesh cannot produce resonances abovefs/3
and a rectilinear mesh has a spectrum that mirrors itself atfs/4.
Due to the mirroring of resonances around half the Nyquist limit,
the output of a rectilinear mesh is usually lowpass filtered in or-
der to retain only the “unique” modes belowfs/4. However, this
filtering is not required if the user is only interested in having an
output with a maximal number of modes instead of an exact phys-
ical model of a resonating structure.

In a DWG mesh, the number of degrees of freedom of the
model is equal to the number of delay elements. So in a homoge-
neous and freely resonating rectilinear K mesh the maximum num-
ber of modes below the mirroring frequency is equal to the num-
ber of junctions. The highest mode index numberni is equal to
the number of junctions along the corresponding dimension. If the
phase of the reflectedwave ispreserved at the boundary,ni ≥ 0.
In the case of phase reversing reflection, the lowest modes are can-
celed, and only modes withni ≥ 1 are supported.

3.2. Hyperdimensional DWG mesh structure

The mesh dimensionalityN is not restricted to the limits of our
physical world. Instead, hyperdimensional meshes are easy to
construct by adding more interconnections between the scattering
junctions [20, 13, 26].

As seen in Fig. 2, the modes are distributed equally in a 1-
D DWG structure. In rectilinear meshes with higher dimension-
alities, the modes are densest nearfs/4 and sparsest at frequen-
cies close to DC andfs/2. As the number of junctions is kept
constant with increasing dimensionality, the number of junctions
along each dimension is diminished. This packs the modes closer
aroundfs/4. At the same time, the modal frequencies become
higher because the sampling frequency increases with dimension-
ality, as seen from (9). The number of independent indicesni in
(5) is equal to the number of dimensions. Maximizing the number
of dimensions and choosing theLi values close together from a
prime number series minimizes the harmonicity of the mode dis-
tribution, which is beneficial for simulating reverberation over a
wide frequency bandwidth [27]. The inharmonicity is further aug-
mented by perturbation in mode frequencies caused by the numer-
ical dispersion inherent in thewaveguide mesh structure [2, 8].

3.3. Boundary conditions

For realistic reverberation modeling, frequency-dependent losses
have to be implemented. In real rooms, high frequencies usu-
ally decay faster than low frequencies due to absorption of en-
ergy by air and wall materials. Another important feature is the
strong modal frequencies with long decay times characterizing
some spaces, especially musical instrument bodies.

In a DWG mesh, the frequency-dependent losses can be com-
bined and implemented with boundary filters. In this way the inner
mesh structure is kept lossless and homogeneous. As discussed
earlier, the inner mesh was implemented using K formulation. As
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Figure 2:Frequency responses of rectilinear meshes with 420 scat-
tering junctions, organized in four different dimensionalities. The
reflection coefficient of all boundaries wasR = −1. The mesh
was initialized at a corner junction, and the output was read at the
same location.
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Figure 3:The boundary junction with KW-conversion and second-
order FIR filter [28].

boundary filters are easier to design for travelingwave variables,
a boundary junction structure including a variable-type converter
and a second-order FIR filter was used, as depicted in Fig. 3 [28].

The boundary reflection characteristics are determined with
coefficientsR1, R2, and R3. This kind of low-order filter can
model simple lowpass behavior and is effective enough for nonex-
act simulation of impulse responses.

4. APPLICATION TO ARTIFICIAL REVERBERATION

The frequency response of a reverberant structure can be coarsely
divided into two bands. At low frequencies, the modes can be
individually heard. Their frequencies and decay times are psy-
choacoustically important, so recreating them exactly is needed
for convincingly simulating the response. At higher frequencies,
the modal frequencies are not heard individually, and thus an ex-
act physical model is not needed. For natural sounding simulation
of high-frequency reverberation, the key issues are the density and
the irregularity of the modal structure [27].

In the presented examples, the hypermesh structure is used
to generate the high-frequency portion of the impulse responses
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Figure 4:Dimensions of the lecture hall T3 at the Helsinki Univer-
sity of Technology.

of a lecture hall and a clavichord soundbox. In both cases, the
high-frequency hypermesh response is combined with the output
of other resonator models providing the low-frequency modes at
physically correct frequencies. This is similar to hybrid models
which have been used for simulating bodies of musical instru-
ments, in which a reverberation algorithm is combined with a res-
onator bank in parallel [14, 29].

Sound samples of the studied cases are available at
http://www.acoustics.hut.fi/∼vpv/publications/hypermesh/.

4.1. Case: Lecture hall

In the first example, the hypermesh is applied to the simulation
of room reverberation. The impulse response of lecture hall T3 at
the Helsinki University of Technology was measured and used as
a reference. The dimensions of the lecture hall are shown in Fig.
4. The ceiling area is smaller than the floor area, as the left-side
wall and the back wall are sloping. A soft absorbent plate is hung
at 0.40 m below the ceiling, covering the full area from the back
wall to 3.0 m from the front wall.

The room impulse response was measured 5.5 m from the left
wall and 10.0 m from the front wall at a height of 1.7 m. The
speaker used as a sound source was located 2.7 m away from both
the left and the front wall equally, at a height of 1.2 m. The five
most prominent frequency modes and their corresponding 60 dB
decay times are listed in Table 1. They were evaluated from the
measured signal and then removed from it.

A two-pole, two-zero inverse filter was designed for mode re-
moval after determining the frequencies and decay times. TheT60s
were estimated by fitting a straight line to the time-domain values
of the response’s energy decay relief (EDR) [30] at the frequency
bin associated with a particular mode. The slope of the line was
then inverted and scaled to obtain theT60 value. The zeros of each
inverse filter are complex conjugates whose angles are the posi-
tive and negative radian frequency of the mode to be removed and
whose radiusR is matched to theT60 of the same mode by the re-

lationshipR = e
ln(0.001)

T60fs . The two poles are identical to the zeros
except that the radius is slightly contracted by a factor very close
to 1, in order to isolate the effect of the zeros to the target mode
[31]. 0.9999 was used when neighboring modes are very close to
each other, but a factor of 0.999 was sufficient in most cases. The
reverberation time of the remaining signal was evaluated on octave

Frequency (Hz) T60 (sec) Magnitude (dB)
75.96 0.8134 -25.90
102.52 1.3244 -30.58
122.02 1.4195 -29.31
138.08 0.9622 -31.85
148.02 1.3221 -29.02

Table 1: Analysis results for prominent modes of the lecture hall
impulse response, to be implemented with a resonator bank.

Boundary R1, R3 R2

3D hard walls 0.01958 0.84000
3D soft ceiling 0.00896 0.85918
4D mid frequencies 0.00440 0.67470
4D high frequencies 0.00200 0.91200

Table 2: Filter coefficients of the room impulse response simula-
tion.

bands, and theseT60 values were used as the optimization goal for
the 4-D meshes.

The five highest octave bands with central frequencies from
1 kHz to 16 kHz were simulated by a multirate system consist-
ing of two rectilinear 4-D meshes of7 × 8 × 10 × 13 junctions
each. The hypermesh dimensions were chosen to produce maxi-
mally dense and irregular modal pattern over a sufficiently wide
frequency band. A multirate system was utilized, as use of large
meshes and filter structures was thus avoided. This is essential,
as computational cost of a hyperdimensional mesh grows rapidly
with the number of junctions. The boundary filters shown in Fig.
3 were implemented at one end of the longest dimension, while
perfectly reflecting, phase inversing conditions were implemented
at other boundaries by fixing their values to zero. The simulation
was run for 48000 time steps for the first mesh, and for 12000 steps
for the second mesh, as its output was upsampled by a factor of 4.
A Nyquist filter was used for anti-aliasing. The coefficients of the
3-tap FIR filters at one7×8×10 junction boundary of each mesh
were optimized for minimizing the maximum error inT60-values
of the combined output. A Nelder-Mead optimization, provided
by Matlab, was used.

At lower frequencies, the exact frequencies of each mode are
perceptually important, and thus simulating only the decay times
would not provide an appropriate result. Instead, a 3-D triangu-
lar mesh, also known as a 3-D dodecahedral or hexagonal close
packed, was defined to model the low-frequency response. The
low-frequency mesh topology was chosen by the fact that the dense
triangular mesh exhibits minimal numerical errors. The mesh di-
mensions were designed to match the room dimensions as closely
as possible with junction spacing of0.2 m. Using (9), the sampling
frequency of the mesh is seen to befs ≈ 2.9 kHz and the highest
frequency modeled is thus about 950 Hz. Linear-phase FIR fil-
ters were designed for all boundaries of the mesh. Two different
sets of filter coefficients were optimized to match the reverbera-
tion times of the received signal to the measurement results. One
filter was used for the soft ceiling, another for other surfaces. The
coefficients used are listed in Table 2. The two hypermeshes were
excited at a corner junction with impulse responses of high-order
filters to match their frequency responses together at crossover
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Figure 5:Frequency responses of the input filters of the two hyper-
meshes used in the room impulse response simulation: above for
the mid frequencies and below for the highest frequencies.

Frequency (Hz) MeasuredT60 SimulatedT60

125 1.4640 0.5116
250 0.7403 0.6437
500 0.6503 0.4493
1000 0.5833 0.4277
2000 0.5640 0.5146
4000 0.5221 0.5212
8000 0.4739 0.4876
16000 0.3526 0.3388

Table 3:Reverberation times of the measured and simulated room
impulse responses of the lecture hall T3. Center-frequencies of the
octave bands are listed.

frequencies. The frequency responses of the filters are shown in
Fig. 5. The 3-D mesh was excited with a unit impulse at a location
closely matching the location of the sound source in the reference
measurement setup and the response was recorded from a point
representing the measurement location, respectively.

The measured and simulatedT60 values are shown in Table
3, and the time-frequency representations of the responses can be
seen in Figs. 6 and 7, respectively. The resulting responses can
be seen to be a good match in terms of reverberation times, espe-
cially at the frequencies above 1 kHz modeled specifically by the
hypermeshes. The initial shapes of the frequency responses are
significantly different, as the equalization of the relative magni-
tudes of the mesh outputs was set only by ear. This affects the first
0.1 seconds of the response. The difference in the latter part of the
signals is explained by the noise present in the measured response
in Fig. 6 and absent in the simulated response in Fig. 7. Also, for a
better match at frequencies below 1 kHz, the low-frequency model
could have been implemented more precisely especially in terms
of spatial resolution and boundary filter design. However, this was
not the focus of this paper.

Figure 6:Measured impulse response of the lecture hall.

Figure 7:Simulated impulse response combined from the outputs
of a 3-D triangular mesh for low frequencies and two 4-D hyper-
meshes for the frequencies above 700 Hz.
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4.2. Case: Clavichord soundbox

In the second example, the reverberant impulse response of a clavi-
chord soundbox was modeled using two hypermeshes and a res-
onator bank. The response used as the overall simulation target
was produced with an impulse hammer impact on the soundbox
while the strings of the clavichord were carefully damped. Figure
8 shows the time-frequency representation of the impulse response
of the clavichord soundbox. It contains many modes between
about 30 Hz and 3 kHz, but no significant energy at frequencies
higher than that.

The hypermeshes served to generate an approximation of the
dense high-frequency modes of the soundbox. The hypermesh
simulation target was the soundbox impulse response whose long-
ringing modes in the low-frequency range were removed by in-
verse filtering [31]. 28 biquadratic resonators were used to isolate
the prominent modes below 500 Hz. Fewer resonators can be used
in practice depending on the desired synthesis quality.

A multirate system was created, as in Section 4.1, to imple-
ment the soundbox reverberator in Fig. 9. Only two hypermeshes
of 8× 9× 11× 13 junctions were needed to generate sufficiently
dense reverberation within the reduced bandwidth. The output of
one of the meshes was upsampled by a factor of 3. The total
response was filtered with a sixth-order LPC filter, whose coef-
ficients were obtained from the measured soundbox impulse re-
sponse after extracting the most prominent modes. Boundary fil-
ters were designed to match the decay times which were analyzed
for each one third-octave band. The meshes were initialized with
a filter output signal having a frequency response as depicted in
Fig. 10 for flattening the overall shape of the mesh response seen
in Fig. 2. Responses were recorded at opposite corner locations
compared to the initialization points.

Figure 11 is the time-frequency representation of the hyper-
mesh model of the high-frequency response of the clavichord sound-
box. The low-frequency modes that have been extracted are not
included in this model. It is seen by comparing Figs. 8 and 11 that
the hypermesh model produces a similar, but not exactly identical,
response between about 100 Hz and 2 kHz. The low-frequency
modes need to be implemented with separate resonators to obtain
a full model of the soundbox.

The commuted synthesis [32, 33] clavichord model described
in an article by Välimäki et al. [34] can be enhanced by replac-
ing the sampled soundbox response triggered at each note with a
soundbox reverberation module, such as the one described above.
In a synthesis model using this scheme, the output of a string mod-
ule would be fed into a body/resonator module as shown in Fig. 9.
A similar solution has been used for sound synthesis of the harp-
sichord, where reverberation from the soundboard was simulated
with a feedback delay network reverberator [35].

A reverberator model with a spatial interpretation such as the
hypermesh supports multiple input locations and allows for subtle
differences in reverberation for each note. This would be analo-
gous to subtle differences in the soundbox response resulting from
each string’s unique driving point on the bridge. The contribution
of a hypermesh reverberator to a synthetic clavichord tone makes it
sound more realistic and lively than if it were only overlaid with a
sampled soundbox impulse response, which always adds the same
reverberation effect to the tone.
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Figure 8:Measured impulse response of the clavichord soundbox.
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Figure 9: Simplified clavichord synthesis model incorporating a
reverberation module to simulate the soundbox.
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Figure 10:Frequency response of the input filter of the hyperme-
shes used in the clavichord soundbox impulse response simulation.
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Figure 11: Combined response of the two hypermeshes used in
the simulation of the clavichord soundbox impulse response. The
low-frequency modes implemented with separate resonators are
not included.

5. CONCLUSIONS AND FUTURE WORK

The hyperdimensional digitalwaveguide mesh discussed in this
paper is a four-dimensional variation of the DWG mesh technique.
The main advantage of this structure is its ability to provide a much
more dense and irregular modal structure at high frequencies com-
pared to meshes of lower dimensionality. This encourages the uti-
lization of the presented technique, for example in the creation of
artificial reverberation as presented in our paper. The attenuation
characteristics of the mesh can be controlled by similar boundary
conditions as used with 2-D and 3-D meshes, thus enabling shap-
ing of the resulting magnitude response.

This paper has shown two applications: simulation of a lec-
ture hall and simulation of a clavichord soundbox. The quality
obtained in these simple examples encourages to study further the
uses of hyperdimensional meshes in the field of spatial audio. In
the future, the hypermesh should be compared with other methods
and listening tests should be performed to assess the sound quality.
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