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ABSTRACT

The human auditory system is able to focus on one speech signal
and ignore other speech signals in an auditory scene where several
conversations are taking place. This ability of the human auditory
system is referred to as the “cocktail-party effect”.

This property of human hearing is partly made possible by bin-
aural listening. Interaural time differences (ITDs) and interaural
level differences (ILDs) between the ear input signals are the two
most important binaural cues for localization of sound sources, i.e.
the estimation of source azimuth angles.

This paper proposes an implementation of a cocktail-party
processor. The proposed cocktail-party processor carries out
an auditory scene analysis by estimating the binaural cues
corresponding to the directions of the sources. And next, as a
function of these cues, suppresses components of signals arriving
from non-desired directions, by speech enhancement techniques.
The performance of the proposed algorithm is assessed in terms
of directionality and speech quality.

The proposed algorithm improves existing cocktail-party pro-
cessors since it combines low computational complexity and effi-
cient source separation. Moreover the advantage of this cocktail-
party processor over conventional beam forming is that it enables
a highly directional beam over a wide frequency range by using
only two microphones.

1. INTRODUCTION

1.1. Overview

The “cocktail-party effect” is the ability of the human auditory
system to select one desired sound from an ambient background of
noise, reflections, or other sounds. For instance, at a party, where
many talkers are speaking simultaneously, humans may focus their
attentions on one voice and ignore other voices and noise which are
possibly equally strong in loudness.

The concept of a cocktail-party processor, motivated by
simulating electronically the “cocktail-party effect”, has been
introduced earlier in [1]. The algorithm simulated neural
excitation patterns based on specific physiological assumptions
about the auditory system. Next, by a model of central stages of
the signal processing in the auditory system, a spatial analysis of
the auditory scene was performed in order to predict the azimuth
angles of the sound sources. These spatial parameters were
then used to control the transfer function of a time-variant filter,
removing the components of signal arriving from non-desired
directions.

For low computational complexity, the proposed cocktail-party

processor makes simplified physiological assumptions compared
to [1]. Using a FFT based time-frequency representation of the ear
input signals, the proposed algorithm first estimates the binaural
localization cues (ITDs and ILDs) related to the azimuth angles of
the sources to be recovered. Next, different speech enhancement
techniques are controlled as a function of these binaural cues:
in addition to conventional short-time spectral modification, as
in [1], the proposed algorithm applies blind source separation in
order to improve source separation.

1.2. Mixing model

The goal of the proposed cocktail-party processor is to recover a
desired speech signal given two linear mixtures of speech signals,
representing the right and left ear input signals, xR[n] and xL[n]:

xR[n] =

NX
i=1

si[n] and xL[n] =

NX
i=1

aisi[n− di] , (1)

where s1, . . . , sN are the N speech sources, spatially distributed
as represented in Figure 1. ai and di are the attenuation coefficient
and time delay associated with the path from the ith source to the
left ear. The azimuth angle of the ith source is Φi. Note that it is
assumed that all sources are in different directions1, and only the
direct paths are considered, i.e. we assume anechoic conditions.

Figure 1: The ear input signals are linear mixtures of the speech
signals coming from spatially distributed sound sources.

1If several sources are in the same direction they are considered as a
single source.
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Let s1[n] be the desired speech signal arriving from the di-
rection defined by Φ1 = 0◦. The other speech sources are con-
sidered as interfering speech sources. For a low computational
complexity, we consider the short-time spectra of the ear input sig-
nals, XR[m, k] and XL[m, k], obtained by a windowed short-time
Fourier transform (STFT). m denotes the frequency index, and k
the frame number.

2. CONSIDERING BINAURAL CUES

2.1. Definition of binaural cues

Localization of sound is partly made possible by capturing the
slight differences between sound signals at the right and left ear
entrances. In order to understand how the auditory system esti-
mates the direction of arrival of a sound, we first consider a single
sound source [2]. The Ear input signals can be seen as filtered
versions of the source signal, as shown in Figure 2(a): the filters
used are referred to as head related transfer function (HRTF). But
a more simple manner to model the ear input signals is to assume
only a difference of path length from the source to both ears, as
shown in Figure 2(b). As a result of this path length difference,

Figure 2: (a): Ear input signals modelled as filtered versions of the
source signal, by the HRTFs hR and hL . (b): Ear input signals
modelled with a difference in length of paths dR − dL to both
ears. HRTFs and the difference in length of paths are linked to the
azimuth angle Φ of the source.

there is a difference in time of arrival of sound, denoted interaural
time difference (ITD). Additionally, the shadowing of the head re-
sults in an intensity difference to the right and left ear input signals,
denoted interaural level difference (ILD). ITD and ILD are the bin-
aural localization cues of the considered sound source. They are
directly linked to the azimuth angle Φ of this source.

2.2. Auditory scene analysis

The auditory scene analysis (source localization) is important for
ultimately estimating the source signals. The directions of the
sources are evaluated based on the ITDs. Next, the correspond-
ing ILDs are computed by considering HRTF data lookup.

Source localization is mainly based on the coherence function
between right and left ear input signals:

ΓLR[m, k] =
ΨLR[m, k]p

ΨLL[m, k]ΨRR[m, k]
, (2)

where m is the frequency index, k is the frame number, and

ΨLR[m, k] = E {XL[m, k]X ∗
R[m, k]} , (3)

where E{. . .} stands for the mathematical expectation [3]. In the
time domain the coherence function ΓLR[m, k] corresponds to the
normalized cross-correlation function γLR[n, k] between xR[n]
and xL[n]. γLR[n, k] is evaluated over time lags in the range of
[−1, 1] ms, i.e n/fs ∈ [−1, 1] ms, where fs is the sampling rate.
If only a single source si is emitting sound, the ITD is estimated
as the lag of the peak of the normalized cross-correlation function:

ITDi = arg max
n

γLR[n, k] . (4)

In a more complex auditory scene, where a number of sources
are emitting simultaneously, we assume that the auto-correlation
functions γsi [n, k] of the source signals si[n] do not overlap. And
thus the resulting cross-correlation function γLR[n, k] is the sum
of auto-correlation functions γsi [n, k], shifted in time by the cor-
responding ITDi. Figure 3 illustrates the peaks detection of the
normalized cross-correlation function. A peak corresponds to a
source emitting from a direction leading to a time lag, correspond-
ing to the ITD, in the normalized cross-correlation γLR[n, k].

Figure 3: Different auditory scenes analyzed by ITD estimation.
Two static sources are emitting simultaneously with two different
ITDs (right top corner). Two sources are moving linearly over time
(left top corner). Three static sources with an additional source
moving linearly (left bottom corner). A static source with a source
moving by following a cosine law (right bottom corner).

So far, we have only considered ITD. However, in order to
analyze precisely the auditory scene, ILD needs to be taken into
account. For each sound source si, the missing cue (ILDi) is eval-
uated from a head related transfer function (HRTF) data lookup.

ITD and ILD can be described as functions of azimuth angle
and frequency: gT (m,Φ) and gL(m,Φ), respectively. While ITD
can be approximatively considered as independent of frequency,
ILD is highly frequency dependent and is relevant for spatial per-
ception for frequencies above about 1.5 kHz. However, we only
estimate a single full band ILD in order to complete the scene
analysis. In this case ITD and ILD are independent of frequency
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by considering a weighted sum of the two dimensional functions,
gT (m,Φ) and gL(m,Φ), among frequencies,

ITD = gT (Φ) =
X
m

cmT gT (m,Φ)

ILD = gL(Φ) =
X
m

cmL gL(m,Φ) ,

(5)

where cmT and cmL are the frequency dependent scale factors for
ITD and ILD, determined by the HRTF CIPIC Database [4].

Now, the azimuth angle Φi of each source can be calculated
from the ITDi by using the inverse function g−1

T (ITDi). And next
from this azimuth angle we can estimate the corresponding ILDi,
as shown in Figure 4.

Figure 4: Evaluation of azimuth angle from estimated ITD by an
inverse function, followed by the estimation of ILD by the function
which directly links azimuth angles to ILD.

The auditory scene analysis yields a single pair of full band
binaural cues (ITDi and ILDi) for each speech source si. These
binaural cues are directly linked to the direction of arrival of source
si.

2.3. Using binaural cues for speech enhancement techniques

In the proposed algorithm, the main application of previously bin-
aural cues estimation is to get source dependent parameters in
order to control the used speech enhancement techniques: blind
source separation (BBS) and noise-adaptive spectral magnitude
expansion (NASME), presented in Sections 3 and 4, respectively.

BBS needs to solve the mixing model in equation (1). The
estimated binaural cues are directly linked to the attenuation coef-
ficients ai and the time delays di, defined in equation (1). Indeed,
for a source si, a positive azimuth angle Φi corresponds to a point
source situated at the right side with respect to the head of the lis-
tener. Also the sound of a source localized on the right side of
the head will arrive first at the right ear (di > 0 ms) and the sig-
nal level will be stronger at the right ear (ai < 0 dB). Because of
gT (Φ) and gL(Φ) being monotonically increasing, a positive Φi

yields positive ITD (ITDi > 0 ms) and ILD (ILDi > 0 dB). More
generally we can write for the source i,

di = ITDi [samples]
20 log10 (ai) = −ILDi [dB] . (6)

Moreover, NASME requires signal statistics in order to be car-
ried out. The variances of the sources signals are estimated from
the power spectra of the input signals. since speech signals are
assumed stationary over short time periods between 10 ms and
20 ms. A short-time estimate of the frequency domain cross-
correlation between xR[n] and xL[n], defined in (3), is obtained
by:

ΨLR[m, k] = αXL[m, k]X ∗
R[m, k] + (1− α)ΨLR[m, k − 1] ,

(7)

where the factor α determines the degree of smoothing over time.
With an inverse fourier transform, the smoothed time domain
cross-correlation ψLR[n, k] is obtained. As before, under the
assumption that the resulting cross-correlation function ψLR[n, k]
is the sum of auto-correlation functions ψsi [n, k] of the source
signals si[n], shifted in time by the corresponding ITDi, the
variance σ2

si
[k] is:

σ2
si

[k] = ψLR[ITDi, k] . (8)

The variances σ2
xR

[k] and σ2
xL

[k], of ear input signals xR[n] and
xL[n], are computed in the same manner by considering the auto-
correlation functions ΨRR[m, k] and ΨLL[m, k].

As a conclusion, the mixing model defined in equation (1) has
been solved. Additionally, the short-time variances of the signals
si[n], xR[n] and xL[n] have been estimated. The resulting param-
eters, ai, di, σ2

s1 [k], σ
2
xR

[k] and σ2
xL

[k], are used to control speech
enhancement techniques.

3. BLIND SOURCE SEPARATION

3.1. W -disjoint orthogonality

The first speech enhancement technique to be used is blind source
separation (BSS) [5]. The goal of BSS is to recover the original
source signals, given linear mixtures of these source signals. The
considered linear mixtures are defined in equation (1). By per-
forming a discrete windowed STFT, with a suitable window func-
tion W [n], the mixing model can be expressed in the frequency
domain as:

XR[m, k] =

NX
i=1

Si[m, k],

XL[m, k] =

NX
i=1

aiSi[m, k]e
−

2πmdi
M ,

(9)

where M is the length of the discrete fourier transform (DFT).
In BSS, it is assumed that the spectra, S1[m, k], . . . ,SN [m, k],

of the N source signals satisfy the W -disjoint orthogonality con-
dition. W -disjoint orthogonality corresponds to non-overlapping
windowed STFT representations of the sources. This condition

Figure 5: Time-frequency representation of the ear input signals
for a scenario as is shown in Figure 1. The spectrogram with two-
dimensional time-frequency grid shows the basic ofW -disjoint or-
thogonality assumption that each point of this grid is related to
only one of the three sources.
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means that at most one source is active at each time-frequency
point [m, k]. That is, each point of the time-frequency grid
represents only one source, as illustrated in Figure 5.

3.2. Time-frequency masks

In order to decide on the pairing between speech sources and time-
frequency points, for each source i, the maximum likelihood func-
tion is evaluated:

Li[m, k] =
1

2π

− 1
2(1+a2

i
)
|aie

−
2πmdi

M XL[m,k]−XR[m,k]|2

, (10)

where the parameters ai and di have been evaluated estimated by
the audio scene analysis in (6). L1[m, k] is the likelihood that the
source s1 is dominant at time-frequency point [m, k]. The points
[m, k] of the time-frequency grid, which represent the source s1,
satisfy:

∀ i 6= 1, Li[m, k] < L1[m, k] . (11)

Then the binary time-frequency mask, used for extracting the con-
tributions of the source s1 from the ear input spectra, is computed
as follows:

M1[m, k] =


1 ∀ i 6= 1, Li[m, k] < L1[m, k]
0 otherwise . (12)

From this mask, the source s1 is recovered from the mixtures by:

S1R [m, k] = M1[m, k].XR[m, k] for the right ear,
S1L [m, k] = M1[m, k].XL[m, k] for the left ear; (13)

and by considering both ears, the spatial distribution of the sources
is preserved.

4. NOISE-ADAPTIVE SPECTRAL MAGNITUDE
EXPANSION

4.1. Gain filter

The second speech enhancement technique implemented is noise-
adaptive spectral magnitude expansion (NASME) [6]. This tech-
nique combines both compandors and conventional noise reduc-
tion techniques such as parametric spectral subtraction. The main
idea is to adapt the spectral magnitude expansion as a function of
noise level and spectral components. NASME focuses on the sup-
pression of uncorrelated additive background noise,

x[n] = s1[n] + v[n] , (14)

where v[n] is the noise measured at the ear entrance. Note that
x[n] can represent either the right or the left ear input signal, since
NASME is performed separately on each channel and thus the pa-
rameters ai and di are not considered.

By analogy with parametric spectral subtraction, the estimated
desired speech signal magnitude spectrum can be computed with
the gain filter H by:

Ŝ1[m, k] = H[m, k].|X [m, k]|e argX [m,k] = H[m, k].X [m, k] .
(15)

The phase remains unchanged by this filtering, which has no con-
sequence since the human perception is relatively insensitive to
phase corruption.

In NASME, the gain filter, H, is given by:

H

 
|V̂[m, k]|
|X [m, k]|

!
=

"
A[m, k]

|V̂[m, k]|
|X [m, k]|

#1−θ[m,k]

. (16)

Moreover |H| is upper-bounded by 1. A[m, k] is the crossover
point, used to adapt the gain filter to the estimated noise magni-
tude spectrum |V̂[m, k]| and θ[m, k] controls the expansion as a
function of the inverse signal to noise ratio (SNR).

Figure 6: Gain filters H[m, k] for several parameters θ and a con-
stant crossover point A = 10 dB are plotted as functions of the
inverse signal to noise ratio.

The gain curves, as a function of the inverse SNR, for several
expansion powers θ and a constant crossover point A = 10 dB, are
shown in Figure 6.

4.2. Extension to speech signals

In the proposed cocktail-party processor, NASME is used to en-
hance a desired speech signal out of the spatial distribution of
concurrent speech signals. In this case, the noise signal v[n] is
composed of speech signals which are not completely uncorrelated
with the desired speech signal and are not stationary:

v[n] =

NX
i=2

si[n] . (17)

But such signals are considered as statistically reasonably inde-
pendent if they are observed over a sufficient long period of time.
And over a sufficient short period of time they can be considered as
stationary. By choosing a suitable analysis frame size, we assume
that speech signals satisfy statistical independence and stationarity.
By doing some approximations, we adapt NASME to mixtures of
speech signals, as explained next.

The first approximation is related to the estimated noise
spectrum. Indeed the noise spectrum is a combination of the
spectra S2[m, k], . . . ,SN [m, k]. And since each of the N − 1
noise sources can not a priori be separated, the noise magnitude
spectrum can not be directly estimated. But by assuming that
s1[n] and v[n] are uncorrelated, the instantaneous power spectrum
of the noise v[n] can be recovered by subtracting an estimate of
|S1[m, k]| from the estimate |X̂ [m, k]|:

|V̂[m, k]|2 = |X̂ [m, k]|2 − |Ŝ1[m, k]|2 . (18)

The corresponding noise spectral magnitude is,

|V̂[m, k]| =
q
|V̂[m, k]|2 =

h
|X̂ [m, k]|2 − |Ŝ1[m, k]|2

i 1
2
.

(19)
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A more general form can be derived by introducing the parameters
α, β and γ,

|V̂[m, k]| =
h
|X̂ [m, k]|α − γ|Ŝ1[m, k]|α

iβ

. (20)

where α and β are exponents and γ controls the estimation of
|S1[m, k]| in case it is under or over estimated. The estimated
noise magnitude spectrum is calculated only from the spectra of
the ear input signals and the desired signal. This method has the
advantage that the computation time is reduced, and if the number
N of sources becomes large, the computation time stays the same.

As a second approximation, the variances of signals are es-
timated rather than their entire power spectrum. The magnitude
spectrum |Ŝ1[m, k]| is estimated according to:

|Ŝ1[m, k]| =
q
σ2

s1 [m, k] ≈
p
|S1[m, k]|2 . (21)

The variance of the desired speech signal, σ2
s1 [m, k], as well as the

variances, σ2
xR

[m, k] and σ2
xL

[m, k], of the ear input signals have
been estimated from the auditory scene analysis.

Then, the noise magnitude spectrum is directly computed from
equations (20) and (21):

|V̂[m, k]| =
»p

σ2
x[m, k]

α
− γ
q
σ2

s1 [m, k]
α
–β

. (22)

Finally the gain filter H defined in equation (16) becomes:

H1[m, k] = 
A[m, k]

»
|
√

σ2
x[m,k]

α
−γ

q
σ2

s1
[m,k]

α
|

√
σ2

x[m,k]
α

–β
!1−θ[m,k]

,
(23)

where A[m, k] defines the crossover point, and θ[m, k] controls
the expansion power. Finally, the source s1 is recovered from the
mixtures by:

S1R [m, k] = H1[m, k].XR[m, k] for the right ear,
S1L [m, k] = H1[m, k].XL[m, k] for the left ear. (24)

5. THE PROPOSED COCKTAIL-PARTY PROCESSOR

The proposed cocktail-party processor combines both BSS and
NASME as illustrated in the block diagram in Figure 7. The first
step is concerned with time-frequency transform adapted to speech
signals. Then the scene analysis is carried out by estimating the
binaural cues (6) related to the directions of the sources to be re-
covered. The different source dependent parameters, are evalu-
ated using these binaural cues. Next, as the function of these pa-
rameters, the speech enhancement techniques, blind source sepa-
ration and noise-adaptive spectral magnitude expansion, are per-
formed simultaneously. However, the uniform spectral resolution
of the STFT is not well adapted to human perception. Therefore,
BSS and NASME are carried out within critical bands, which are
formed by grouping the STFT coefficients such as each group cor-
responds to a critical band.

The binary time-frequency mask defined in equation (12) and
the gain filter defined in equation (23) are combined together in a
combined gain filter G1[m, k]. The combined gain filter which is
used to recover speech source s1, is given by:

G1[m, k] = M1[m, k].H1[m, k] . (25)

Figure 7: Detailed block diagram of the proposed algorithm for
the cocktail-party processor.

In order to reduce artifacts and distortions, the last step is devoted
to time and frequency smoothing of the combined gain filter ap-
plied to the ear inputs signals, which are converted back into the
time domain.

6. PERFORMANCE

6.1. Directionality pattern

The ability of the proposed cocktail-party processor to suppress
interfering sources arriving from non-desired directions can be ex-
pressed by means of directionality patterns. The desired direction
is defined by azimuth angle Φ1 = 0◦. The simulations involve
input signals, coming from different directions between −90◦ and
90◦, which have been obtained by convolving white noises with
HRTFs. The attenuations of the output signals have been plotted
within different critical bands.

The resulting directionality patterns are shown in Figure 8:
they are narrow even at low frequencies and their widths are nearly
independent of frequency.

The cocktail-party processor enables a highly directive beam
over a wide range of frequency with only two microphones placed
at the ear entrances. With two microphones, conventional beam
former are much more limited in terms of directionality.

6.2. Intelligibility

For performance evaluation, a concurrent speech signal s2 is added
to the desired speech signal s1 at the mean SNR of 0 dB. In the
processed signal, at the output of the cocktail-party processor, the
concurrent signal is attenuated by 15 dB and only slight changes
compared to the desired signal can be observed by visual inspec-
tion of Figure 9.
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concurrent source(s) mean STI min STI max STI
1 0.95 0.92 0.98
2 0.89 0.78 0.95
3 0.82 0.73 0.88
4 0.73 0.61 0.80

Table 1: The STI is evaluated under diverse acoustical conditions.

Figure 8: Directionality patterns of the cocktail-party processor
within different critical bands. (a): Critical band 125 − 250 Hz.
(b): Critical band 620 − 745 Hz. (c): Critical band 1425 −
1800 Hz. (d): Critical band 3535− 4400 Hz.

Figure 9: The desired speech signal (top) of a female speaker
(Φ1 = 0◦). A concurrent male speech signal (Φ2 = 30◦) is added
to the desired speech (middle). The output of the cocktail-party
processor (bottom).

The intelligibility of the processed signal is evaluated by cal-
culating the speech transmission index (STI) of the cocktail-party
processor, in order to find a good trade-off between the degree of
suppression of signal components and resulting distortions. The
STI is a single number between 0 (unintelligible) and 1.0 (per-
fectly intelligible) [7].

The STI, for the proposed cocktail-party processor, is calcu-
lated for a set of different HRTFs and under diverse acoustical
conditions: with several interfering sources coming from different
directions of arrival. The results are presented in Table 1. For only

one concurrent signal the intelligibility remains nearly perfect, but
for two concurrent signals the intelligibility starts to be deterio-
rated. By increasing the number of concurrent signals the intel-
ligibility becomes worse, but remains still excellent (that means
larger than 0.75 for the STI scales) with up to three interfering
sources.

7. CONCLUSIONS

In this paper, we presented a cocktail-party processor controlled
by binaural localization cues and signal statistics. The proposed
algorithm improves source separation in existing cocktail-party
processors by implementing blind source separation. The good
performance of this algorithm has been demonstrated in terms of
directionality and intelligibility by using the STI.

The proposed algorithm is expected to be of advantage for
many applications such as automatic speech recognition, intelli-
gent hearing aids, or speaker identification. Often, a low compu-
tational complexity is needed for real-time application. The pro-
posed algorithm, implemented with a FFT, offers such a computa-
tional complexity.
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