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ABSTRACT 

In this paper we propose a novel approach for tracking of partials 
in music signals based on a robust Kalman filter. Our tracker is 
based on a regularized least-squares approach that is designed to 
minimize the worst-possible regularized residual norm over the 
class of admissible uncertainties at each iteration. We introduce a 
set of state-space models for our signals based on the evolution of 
frequency and amplitude in different classes of musical instru-
ments. These prior models are used to estimate future values of 
partial tracks in successive time frames of our spectral data. Here, 
the parameters of evolution models are treated as bounded uncer-
tainties and our tracker can robustly track partials in all frequency 
regions. Unlike the conventional Kalman tracker, performance of 
this tracker is not influenced by the magnified track variations in 
higher frequencies. This tracker promises an improved perform-
ance over conventional Kalman tracker while preserving its good 
properties and superiority over existing methodologies. 

1. INTRODUCTION 

Partial tracking has been widely used in different areas of music 
signal analysis where prominent features of these signals, such as 
pitch and frequency-amplitude of harmonics are extracted. The 
role of partial tracking in all these areas can be boiled down to an 
attempt for tracking time-varying features in separate analysis 
frames of a continuous-time music event. These features are cap-
tured from estimated spectrum for frames of the temporal data that 
are small enough to be assumed as stationary.   

 There are various methodologies for tracking of partials in 
audio signals, all of which are based on a model of pseudo-
stationary sinusoidal plus noise  [1]. Partial tracking was first used 
in analysis and synthesis of speech signals  [2] and then adopted 
for the case of music signals  [1], where it was based on a heuristic 
approach. In a more recent approach  [3] and as an extension to  [2], 
linear prediction was used to enhance the tracking of frequency 
components in music signals. In all these approaches peaks from 
successive frames are connected to each other based on their 
proximity in frequency, and the behavior of peaks' amplitude is 
not taken into account while performing the tracking. Another 
approach  [4], which was inspired by a similar technique in radar 
tracking and also a frequency tracker for avalanche signals  [5], 
takes the advantage of Kalman filter by constructing a state-space 
model for the behavior of peaks' power (i.e. amplitude in dB scale) 
and frequency. In this approach peaks are not matched based on 
how close they look like in frequency, rather they are matched 
based on the future behavior of a peak's frequency and power. 

We proposed a partial tracking technique before  [6], which 
was based on the conventional Kalman filter. Parameters of the 
evolution models for this system were estimated through a statisti-
cal analysis of a large database of musical sounds and by averag-
ing over varying estimates. This inaccuracy in model parameters, 
which is unavoidable when dealing with real world models, de-
graded the performance of our tracker in certain situations. This 
sensitivity of Kalman filter to model parameters has also been 
studied before  [7]. 

A feasible solution to this problem can be the use of a robust 
Kalman tracker which deals with model parameters as bounded 
uncertainties. This can be especially rewarding since we do not 
need to tediously estimate these parameters for different situations 
where they can never be accurate enough and, on the other hand, 
our robust tracker can perform a significantly better job in critical 
situations (as will be shown in the results section). 

A general block diagram for the process of forming frequency 
and power partial tracks from the given sound wave is presented 
in Figure 1. 
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Figure 1: The process of partial tracking 

This paper will proceed with a brief discussion on the problem 
of peak detection. In section  3 we will discuss the problem of 
music signal modeling and introduce a set of state-space models. 
The formulation of our robust tracker, which is based on the ap-
proach of  [8], will be discussed in section  4. In section  5 we in-
clude some results and compare the performance of this tracker 
with methods using conventional Kalman tracker. A useful ap-
proximation in reducing the computational expense of our algo-
rithm will follow at the end. 

2. PEAK DETECTION 

Detection of peaks in spectral representations is a very important 
task in the process of music signal analysis. In its ideal shape, a 
peak detection algorithm must be able to detect all the peaks 
pertaining to existing partials and rule out all those that are most 
likely related to noise or imperfections in estimating the spectrum. 
Optimum number of peaks will optimize the computational load 
of the tracking process. On the other hand, a large number of 
inaccurate peaks can result in formation of false partial tracks 
from randomly successive sets of spurious peaks. Based on these 
requirements we proposed a novel technique before  [9]. 
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Our proposed algorithm consists of two steps which are shown 
in Figure 2 . In the first step we use a mathematical framework to 
collect all the peaks that fit into the very definition of a peak as a 
local maximum. These are referred to as raw peaks. In the next 
step, statistical properties of a relative number of data points 
surrounding each raw peak are used to examine the concreteness 
of detected peak and reject any incompetent maxima. 
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Figure 2: Process of peak detection in two steps 

The output of the peak detector is power and frequency infor-
mation of each peak which is stored in two vectors for each time 
frame. 

3. MODELING 

3.1. Time-Varying Partials 

A well-known approach to modeling of music signals for the 
purpose of statistical analysis/synthesis assumes a model of addi-
tive sinusoidal plus residuals that can be formulated as  [1] 

( ) ( ) ( )y t s t e t= +         (1) 
with 

( )
1

( ) ( ) cos ( ) ( )
N

n n n

n

s t A t t tω φ
=

= +∑        (2)   

Here, s(t) reflects the pure musical part of the signal and e(t) 
represents the additive noise, which can be modeled as a station-
ary autoregressive process. In the musical portion, An(t) and ωn(t) 
are representatives of time-varying amplitude and frequency of 
partials, and N is the number of partials. Quantity ( )n tφ  represents 
timbral variations and performance effects. In our analysis this can 
be considered as a noise process.  

3.2. Evolution Models 

What we have as observation is discrete sets of peaks from succes-
sive time frames. An(t) and ωn(t) can be estimated by making 
connections between those peaks from adjacent frames that look 
like being the continuation of the same partial.    

Kalman filtering takes the noisy observations and based on a 
model for evolution of certain states finds the optimal estimate of 
the process behavior. Here, the noise corrupted observations are 
the identified peaks and system model is a state-space model for 
evolution of frequency and power. This model can be represented 
as 
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Here, f(k) and p(k) are frequency and power for a detected 
peak respectively. v(k) and w(k) are process noise and observation 
noise, and ni(k), i=1,…,m are states for as many shaping filters for 
which the uncorrelated noise processes ui(k), i=1,…,m are white. 
The matrix A is the transition matrix, B describes coupling of the 
process noise v(k) into the system states, and C is the observation 
matrix. In this model, v(k) and w(k) are zero-mean and jointly 
uncorrelated Gaussian processes with covariance matrices Q and 
R, respectively. 

For specifying matrices and number of states needed for our 
modeling, prior information about the power and frequency par-
tials is needed. This can help us to specify the model by a piece-
wise-linear fit to p(t)=20log An(t) and f(t)= ωn(t)/2π. 

Based on the overall shape of frequency and power partial in 
different classes of instruments, we introduced two groups of 
models for the purpose of Kalman tracking before  [10]. For the 
class of instruments with nearly constant frequency and power 
partials, which are called the class of Continued Energy Injection 
(CEI), the sate-space model is as follows 
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     (5) 

For the instruments with constant frequency partials and line-
arly decaying power partials, which are in the class of Discontin-
ued Energy Injection (DEI), the state-space model is  
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    (6) 

In a polyphonic setting there are three possible scenarios when 
we do not consider non-melodic instruments such as drums. A 
piece of music can consist of instruments solely form the CEI, or 
only from DEI or a combination of both. 

Depending on the polyphonic scenario, we can estimate the 
parameters of each model, e.g. a1, b1, a2, b2, by performing a 
statistical analysis on a large number of musical sounds with 
known identities and within the specific scenario in a forward-
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problem setting. The details of this procedure are presented in 
 [10].  

Based on our experience, these parameters are frequency de-
pendant. Therefore, in each class and for different frequency bins 
we have different sets of parameters. Estimated parameters for the 
CEI class are shown in Figure 3. In section  5, where we transform 
our model to a form appropriate for robust Kalman tracker, these 
parameters are treated as bounded uncertainties. 

 

 
Figure 3: Estimated parameters for the 4th order model. 

4. ROBUST TRACKING 

As mentioned earlier, in practical applications, where parameters 
of the evolution model are not guaranteed to be accurate enough, 
the performance of Kalman filter can be poor. The conventional 
Kalman tracker that we proposed before  [6] and that of  [4] are not 
exempt from this limitation. With the same model parameters for 
different instruments in one class, we ended up with more false 
tracks where we were dealing with smoother partials, and we got 
more missing tracks where we had partials with larger variations.  

In addition to the inaccuracy of these parameters, a large 
amount of effort is needed for their estimation. By a close look at 
the estimated values for our parameters in Figure 3, one can real-
ize that pole radii for both frequency and power vary arbitrarily 
and are bounded in small intervals. As a solution to these prob-
lems we use a regularized least squares Kalman tracker in the class 
of robust Kalman filters  [8]. This filter promises significant en-
hancements over the conventional tracker and other partial track-
ing methodologies. The computationally complexity of this 
tracker can be noticeably reduced through some useful approxima-
tions that do not affect its tracking performance. This discussion 
will fallow after formulation of the filter and in section  5.1. 

4.1. Regularized Least Squares Kalman Tracker 

This class of robust Kalman filtering is motivated by estimation 
techniques for solution of regularized least-squares problems. 
Compared with the standard Kalman filter, which minimizes the 
regularized residual norm at each iteration, this filter is designed 

to minimize the worst-possible regularized residual norm over the 
class of admissible uncertainties at each iteration  [8].  

Consider a state-space description of the form  
( )( 1) ( ) ( )

( ) ( ) ( )

x k A A x k Bv k
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δ+ = + +

= +
       (7) 

where { }(0), ( ), ( )x v k w k are uncorrelated zero-mean random 
variables with covariance matrices , QΠ  and R respectively. The 
perturbation of A is modeled as 

A D Eδ = Δ          (8) 

for some known matrices { },D E and for an arbitrary Δ , 

1Δ ≤ . Then the recursive formulation for our robust tracker 
can be written as 
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Here, λ̂  is a nonnegative scalar parameter that can be deter-
mined from optimization 

ˆ arg min ( )
TH WH
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where the function ( )G λ  is defined as 
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The relation between new parameters in (11)-(13) and those in 
(9) and (10) is as follows 
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Here, the notation ( )a b⊕  denotes a block diagonal matrix 
with entries a and b. The minimization of (11) will always yield a 
unique solution for λ̂ , since ( )G λ  will always have a global 

minimum in the interval [ ),
T

H WH ∞  [11]. For convenience we 

can denote the lower bound of λ by lλ , where  
T

l
H WHλ        (15) 

Based on observations from our simulations and others  [8], 
the function ( )G λ  usually reaches its minimum at values that are 

very close to lλ . This useful observation suggests that instead of 
lengthy calculations for finding minimum of ( )G λ , we can use a 

practical approximation for finding λ̂ . This approximation can be 
of the form 

ˆ (1 )
l

λ α λ= +        (16) 

This discussion is further elaborated in section  5.1. For now 
we use (11) to find λ̂ . 

4.2. Tracking Procedure 

Our robust tracker is initiated with peak data from the first frame, 
with the initial values 
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where 2

f
σ and 2

p
σ are the variances of observation noise processes, 

and take values close to one. This procedure is presented for the 
CEI model of (5), and for DEI model we have one added zero 
state in (17).  

At the next step we calculate λ̂  by minimizing ( )G λ numeri-

cally over the interval[ ),
T

H WH ∞  and this process is repeated 

for every iteration. After fining λ̂  we use modifications of (10) 
and Kalman tracker of (9) to estimate noise-free values for power 
and frequency in the following frame. If the following frame 
contains a peak that is close enough to the estimated peak, that 
peak is added to the track and is used to update the tracker. This 
process is continued through successive frames until there is no 
peak close enough to the last estimated peak. Here, the track is 
terminated or considered as "dead" and a new track is initiated in 
the following frame. The process starts with all peaks in the first 
frame and also with all peaks from other frames that have not been 
used in any track. 

4.3. Adaptive Acceptance Gate 

A peak is close enough to our estimated peak if it falls into the 
acceptance gate of the track. We use the distance function or 

Mahalanobis distance  [12] to define the closeness of peaks to the 
estimated values as follows 

12 ( ) ( ) ( / ) ( )T Td k e k CP k k C R e k
−

= +⎡ ⎤⎣ ⎦     (19) 

ˆ( ) ( ) ( / )e k y k Cx k k= −       (20) 

Here, ( )e k is the error between current observation and the 

predicted values, and ( / ) TCP k k C R+ is the covariance matrix of 
this error. A peak falls into the acceptance gate of an estimated 
peak if the value of its distance function is less that the gate value. 
If more than one peak is in the acceptance gate, the one with less 
distance is selected. 

Based on our experience, if we set a universal value for our 
acceptance gate, the tracking result will be poor. The nature of our 
frequency tracks is suggestive of an adaptive acceptance gate with 
different values at different frequencies. As mentioned earlier, we 
are dealing with pseudo-stationary signals. Frequencies of our 
partials vary with time but these variations are magnified when we 
move from lower harmonics to the higher harmonics. So, if we 
consider the same value for our acceptance gate in all frequencies, 
we have the risk of missing tracks in higher frequencies or loosely 
accept false partial tracks in lower frequencies. To cope with these 
variations we set the gate value as a function of frequency, which 
is 

( ) 10 0.01g f f= +       (21) 
In fact, we increase the chance of continuing a track where the 

peaks are sparser and less likely to join a track with lower varia-
tions. 

4.4. Missing Peaks 

Due to imperfections in estimating the spectrum and also because 
partials with low power can get buried in noise, we might face the 
problem of missing peaks. This can result in discontinuities in 
parts of a partial. To overcome this problem, it is proposed in  [1] 
to add "zombie" states to the end of a track where we cannot find 
any peak within the acceptance gate. In our algorithm we update 
the track with estimated states in such situation, and continue this 
process for a maximum of three frames. If during these attempts 
no peak falls into the acceptance gate, we consider that track as 
dead and extract the fake updates from the track. If we find a peak 
during this process, the track is updated with this peak and we 
keep the fake updates or zombies. 

4.5. Backward Tracking 

To add to the accuracy of our algorithm we can perform a back-
ward tracking at the end of each track. When a track is terminated, 
we can initiate a backward tracker with the last updated states and 
error covariance matrix. This process is identical to the forward 
tracking but in the reverse direction. This can be helpful because 
the forward tracker, especially for the case of the conventional 
Kalman tracker, is loosely initiated with the noisy observations for 
power and frequency and zero values for other states, while our 
backward tracker is initiated more accurately. On the other hand, 
the backward tracker is capable recovering discontinuity in the 
forward tracking results, since it has the support of a more accu-
rate initiation and a longer history of observation updates. An 
example of tracking improvements in using the backward tracker 
for the case of our conventional tracker is presented in  [6]. 
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4.6. Crossing and Closely-Spaced Partials 

Although power and frequency partials evolve independently from 
each other, considering a function of both power and frequency 
for the distance function in (19) is especially rewarding when we 
are dealing with crossing or closely-spaced partials. This can 
mostly happen in the polyphonic scenarios where we can have a 
combination of either constant and linearly decaying power par-
tials or closely-spaced frequency partials.  

In partial tracking techniques, where power and frequency 
partials are tracked separately ( [1],  [2],  [3]), the problem of cross-
ing partials needs considerable attention and requires additional 
adjustments to the original tracker. However, in our conventional 
tracker of  [6] and our robust algorithm here the contribution of 
constant and distinct frequency partials in the distance function 
helps the tracker to distinguish between the corresponding power 
partials in the crossing area, and it does not need additional ad-
justments. An example of this case is presented in  [6], while our 
robust tracker also enjoys the same property.  

In the same fashion, closely spaced frequency partials can be 
successfully tracked with the support of sparsely-spaced power 
partials. This property is more prominent in the robust tracker than 
the conventional tracker of  [6].  

5. RESULTS 

To use our tracker we first need to put our models in (5) and (6) 
into an appropriate form considered in (7) and (8). This process is 
presented for the forth order model in (7) only. Intending to move 
uncertainties in the input matrix into the transition matrix, we 
write 
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For isolating bounded uncertainties, which appear in Figure 3, 
intoΔ , we can write 
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which results in  
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0 1 0 1 0 0 0 0.5
,
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4
), 1, ..., 4, ( i iD I diag δ == =Δ       (24) 

We examined the accuracy of our algorithm by performing the 
proposed partial tracking on a wide range of instrumental sounds 
from different classes of melodic instruments. The tracking results 
were compared with our conventional tracker  [6] as well as the 
method proposed in  [4]. This comparison was done by first defin-
ing some accuracy factors. These factors are 

100, 100ftdt
dt ft

et et

nn
R R

n n
= × = ×     (25) 

where Rdt is the detection rate, Rft is the false rate, ndt is the num-
ber of detected tracks, nft is the number of false tracks, and net is 
the number of expected tracks. We computed these factors for 32 
musical notes (about 450 partials) from all classes of melodic 
instruments. The comparison results are shown in Table 1. 
 

Method dtR  ftR  

Robust Kalman Tracker 98.3 9.4 
Conventional Kalman Tracker 98.2 18.2 

Method of  [4] 84.7 27.4 
 

Table 1: Tracking accuracy rates 
 

As compared with the method of  [4], our conventional and ro-
bust tracker do a better job in detecting more real tracks and form-
ing less false tracks. This is mainly because of our adaptive accep-
tance gate, while in  [4] a constant acceptance gate (i.e. 10) is 
considered for all frequency regions. 

Furthermore, the superior performance of the robust tracker is 
evident in its higher detection rate and significantly lower false 
rate. This is mostly due to the robustness properties of the robust 
Kalman tracker. This can be further observed in Figure 4, where 
our robust estimates track the frequency partial more closely than 
the conventional tracker. Since in the conventional tracker of  [6] 
and  [4] estimated and averaged values for parameters of the evolu-
tion models are used, the deviation of estimates can be randomly 
high and divertive. These deviations can increase the risk of form-
ing false partial tracks. 

In polyphonic settings, where we can have more than one mu-
sical note at a time, harmonics of different notes can get very close 
to each other. In this situation, estimates with higher deviations 
can follow the wrong trajectory (see Figure 5). In the conventional 
tracker this is due to the more weight given to noise power in 
higher frequencies for coping with magnified frequency variations 
in higher frequencies (see the right side of Figure 3). On the con-
trary, the tracking properties of our robust tracker are not influ-
enced by these variations. 
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Figure 4: Performance of the two trackers. Upper: Robust 

tracker with estimated (dashed) and observed (solid) 
tracks. Lower: conventional tracker with estimated 

(dashed) and observed (solid) tracks. 

 
Figure 5: Tracking in the presence of closely spaced par-

tials: Robust tracker (upper) and conventional tracker 
(lower); with observed track for higher harmonic (solid), 

its estimates (asterisk), observed track for lower harmonic 
(dashed) and its estimates (circle). 

5.1. Useful approximation 

Considering (14), (15), (18), and (24) we have 
2 2max( , )

l f p
λ σ σ− −=       (26) 

If 2 2
0.97

f p
σ σ= = then we get λl =1.031. In concurrence with 

observations of  [11], through all of our experiments the calculated 
values of λ̂  in (11) were very close to the lower bound λl. This 
observation suggests using an approximation for this parameter as 
indicated in (16), which can reduce the computational expense of 
our algorithm significantly. In fact, using 1.1λ̂ = did not have any 
considerable effect on the tracking results throughout our experi-

ments, and our robust tracker preserved all its prominent proper-
ties. 

6. CONCLUSION 

We presented a novel partial tracking method based on a robust 
Kalman filter. The tracker displays improved capabilities in track-
ing partials thanks to its robustness properties. The computational 
complexity of the recursive algorithm can be noticeably reduced 
by a practical approximation. As the continuation of this work we 
can further investigate the possibility of using a universal evolu-
tion model for all classes of melodic instruments. 
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