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ABSTRACT

Automatic discrimination of speech and music is an important
tool in many multimedia applications. The paper presents an ef-
fective approach based on an Adaptive Network-Based Fuzzy In-
ference System (ANFIS) for the classification stage required in a
speech/music discrimination system. A new simple feature, called
Warped LPC-based Spectral Centroid (WLPC-SC), is also pro-
posed. Comparison between WLPC-SC and some of the classi-
cal features proposed in [11] is performed, aiming to assess the
good discriminatory power of the proposed feature. The length
of the vector for describing the proposed psychoacoustic-based
feature is reduced to a few statistical values (mean, variance and
skewness). To evaluate the performance of the ANFIS system for
speech/music discrimination, comparison to other commonly used
classifiers is reported. The classification results for different types
of music and speech show the good discriminating power of the
proposed approach.

1. INTRODUCTION

Automatic discrimination between speech and music has become a
research topic of interest in the last few years. Several approaches
have been described in the recent literature for different applica-
tions [1][2] [3][4][5]. Each of these uses different features and
pattern classification techniques and describes results on different
material.

Saunders [1] proposed a real-time speech/music discrimina-
tor, which was used to automatically monitor the audio content of
FM audio channels. Four statistical features on the zero-crossing
rate and one energy-related feature were extracted, a multivariate-
Gaussian classifier was applied, which resulted in an accuracy of
98%.

In automatic speech recognition (ASR) of broadcast news, it’s
desirable to disable the input to the speech recognizer during the
non-speech portion of the audio stream. Scheirer and Slaney [2]
developed a speech/music discrimination system for ASR of audio
sound tracks. Thirteen features to characterize distinct properties
of speech and music, and three classification schemes (MAP Gaus-
sian, GMM and k-NN classifiers) were exploited, resulting in an
accuracy of over 90%.

Another application that can benefit from distinguishing speech
from music is low bit-rate audio coding. Designing an universal
coder to reproduce well both speech and music is the best ap-
proach. However, it is not a trivial problem. An alternative ap-
proach is to design a multi-mode coder that can accommodate dif-
ferent signals. The appropriate module is selected using the output
of a speech-music classifier [6] [7].

Automatic discrimination of speech and music is an important
tool in many multimedia applications. Khaled El-Maleh et al. [3]
combined the line spectral frequencies and zero-crossings-based
features for frame-level narrowband speech/music discrimination.
The classification system operates using only a frame delay of 20
ms, making it suitable for real-time multimedia applications. An
emerging multimedia application is content-based indexing and re-
trieval of audiovisual data. Audio content analysis is an important
task for such application [8]. Minami et al. [9] proposed an audio-
based approach to video indexing, where a speech/music detector
is used to help users to browse a video database.

Comparative view of the value of different types of features
in speech music discrimination is provided in [10], where four
types of features (amplitudes, cepstra, pitch and zero-crossings)
are compared for discriminating speech and music signals. Ex-
perimental results showed cepstra and delta cepstra bring the best
performance. Mel Frequencies Spectral or Cepstral Coefficients
(MFSC or MFCC) are very often used features for audio classifi-
cation tasks, providing quite good results. In [4], MFSC’s first or-
der statistics are combined with neural networks to form a speech
music classifier that is able to generalize from a little amount of
learning data. MFCC are a compact representation of the spec-
trum of an audio signal taking into account the nonlinear human
perception of pitch, as described by the mel scale. They are one
of the most used features in speech recognition and have recently
proposed in musical genre classification of audio signals [11][12].

Unlike the previous works, speech/music discrimination ap-
proaches based on only one type of features are presented in [13]
and [5], which result in fast and robust classification systems. The
approach in [13] takes psychoacoustic knowledge into account in
that it uses the low frequency modulation amplitudes over 20 crit-
ical bands to form a good discriminator for the task, while the
approach in [5] exploits a new energy-related feature, called mod-
ified low energy ratio, that improves the results obtained with the
classical low energy ratio.

We present here our contribution to the design of a robust
speech/music discrimination system. An effective approach based
on defining in the signal analysis stage a new simple feature, called
Warped LPC-based Spectral Centroid (WLPC-SC), and applying
in the classification stage an Adaptive Network-Based Fuzzy Infer-
ence System (ANFIS) is proposed. The behavior of the WLPC-SC
feature and the ANFIS classifier are assessed by comparison. AN-
FIS is compared to classical Statistical Pattern Recognition (SPR)
classifiers, such as Gaussian model (GS), Gaussian Mixture Model
(GMM) and k-Nearing Neighborhood (k-NN)-based classifiers.
Other more complex classifiers, such as Support Vector Machines
(SVM) and Radial Basis Function-based Neural Networks (RBF-
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NN), are also considered.

2. SPEECH/MUSIC DISCRIMINATION

2.1. New Warped LPC-based feature

We propose the use of the centroid frequency each analysis win-
dow to discriminate between speech and music excerpts. Usually,
speech signals has a low centroid frequency, which varies sharply
at a voiced-unvoiced boundary. Instead, music signals show a
quite changing behavior. There is no a specific pattern for such
signals. We compute the centroid frequency by a one-pole lpc-
filter. Geometrically, the lpc-filter minimizes the area between
the frequency response of the filter and the energy espectrum of
the signal. The one-pole frequency tells us where the lpc-filter is
frequency-centered. Therefore, someway, the one-pole frequency
informs us where most of the signal energy is frequency-localized.

However, the human auditory system is nonuniform in relation
to the frequency. According to this statement, the Mel, the Bark
and the ERB (Equivalent Rectangular-Bandwidth) scales [14] are
defined for audio processing. For speech/music discrimination, it
would be desirable to use a feature that works directly on some
of these auditory scales, resulting in frequency-warped audio pro-
cessing. The transformation from frequency to Bark scale is a well
studied problem [14] [15]. Generally, the Bark scale is performed
via the all-pass transformation defined by the substitution in thez
domain

z = Aρ(ζ) ≡ ζ + ρ

1 + ζρ
(1)

which takes the unit circle in thez plane to the unit circle in
the ζ plane, in such a way that, for0 < ρ < 1, low frequen-
cies are stretched and high frequencies are compressed. Parameter
ρ depends on the sampling frequency of the original signal [15].
Applying (1), the Bark scale values can be approximated from fre-
quency positions as follows [14]:

b = 13arctan(0.76f(kHz)) + 3.5arctan(
f(kHz)

7.5
)2 (2)

We propose the use of a one-pole warped-lpc filter based on
this bilinear transformation to compute the WLPC-SC feature each
analysis window.

The implementation of these filter can be downloaded from:
http://www.acoustics.hut.fi/software/warp[14].

As can be seen in Fig. 1, the WLPC-SC feature shows clear
differences between voiced and unvoiced phonemes due to the
frequency-warped processing. Besides, these differences are big-
ger than in a drum-based music signal. The results in Fig. 1
suggest us that WLPC-SC could be a profitable low complexity
feature to design a robust music/speech discriminator. It will be
assessed in section 3.

In our system, ananalysis windowof 23 ms (1024 samples at
44100 Hz sampling rate) and atexture windowof 1 s (43 analysis
windows) are defined. Overlapping with a hop size of 512 sam-
ples is performed. Hence, the vector for describing the proposed
feature consists of 86 values, which are updated each 1 s-length
texture window. This large dimensional feature vector is difficult
to be handled for classification tasks, giving rise to two main draw-
backs: 1) too much computational cost, 2) possible too high mis-
classification rate. Therefore, it is required reducing the feature
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Figure 1: Example illustrating the values that LPC-SC and WLPC-
SC takes for both speech and music signals.

space to a few statistical values each 1 s-length texture window.
Mean, variance and skewness of the feature vector are here com-
puted.

2.2. Classification by ANFIS

ANFIS is a fuzzy inference system which is carrier out by means
of adaptive networks. Using a hybrid learning procedure, AN-
FIS can construct an input-output mapping based on both human
knowledge, in the form of fuzzy rules, and stipulated input-output
data pairs.

2.2.1. Fuzzy If-Then Rules

Fuzzy rules are defined by their consequents and antecedents, which
are associate to fuzzy concepts. In other words, fuzzy rules are ex-
pressions of the form IF A THEN B, where A and B are labels
of fuzzy sets [16] characterized by appropriate membership func-
tions. Due to their concise form, fuzzy rules are often employed to
represent the imprecise modes of reasoning that play an essential
role in the human ability to make decisions in an environment of
uncertainly and imprecision.

A form of fuzzy rule which has fuzzy sets involved only in
the premise part is described in [17]. A example with this kind of
fuzzy rules that describes a simple fact is:

If velocity is high, then space = k*(velocity)
wherehigh is in the premise part as a linguistic label char-

acterized by an appropriate membership function. However, the
consequent part is described by a non-fuzzy equation of the input
variable,velocity. If the consequent is a linear function of the input
variables, the fuzzy inference system is catalogued as one-order. If
the consequent is a constant, the system is classified as zero-order.

2.2.2. Fuzzy Inference Systems

Fuzzy inference systems are also know as fuzzy rule-based sys-
tems. Basically a fuzzy inference system is composed of four
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functional blocks (see figure 2):

• A Knowledge base, containing a number of fuzzy rules and
the database, which defines the membership functions of
the fuzzy set used in the fuzzy rules.

• A Ingerence engine, which performs the inference opera-
tions on the rules.

• A Fuzzification interface, which transforms the crisp inputs
into degrees of match with linguistic values.

• A Defuzzification interface, which transforms the fuzzy re-
sults of the inference into a crisp output.
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Figure 2: Fuzzy inference system

In addition to the functional blocks that compose a fuzzy infer-
ence system, two additional blocks are necessary, one at the input
and another at the output. The first one (input block) allows vari-
able magnitudes to be scaled in such way they are in the range [0,1]
or [-1,1] (normalization). The second one (output block) performs
the opposite operation (denormalization).

The basics of fuzzy rules and fuzzy inference systems are well
known topics [16][18] [19].

2.2.3. Adaptive Networks

An adaptive network, as its name implies, is a network structure
consisting of nodes and directional links through which the nodes
are connected. Moreover, part or all nodes are adaptive, which
means their outputs depend on the parameter/s pertaining to these
nodes, and the learning rule specifies how these parameters should
be changed to minimize a prescribed error measure.

An adaptive network (see figure 3) is a multilayer feedforward
network in which each node performs a particular function on in-
coming signals as well as on a set of parameters pertaining to this
node.

To reflect different adaptive capabilities, we use both circle
and square nodes in an adaptive network. A square node (adap-
tive node) has parameters, while a circle node (fixed node) has no
parameters.

Since the basic learning rule is based on the gradient method,
which is notorious for its slowness and tendency to become trapped
in local minima, we use a hybrid learning rule [20], which com-
bines the gradient method and the least squares estimate (LSE) to
identify the parameters and can speed up the learning process sub-
stantially.

The architecture and learning procedure of adaptive networks
are well described in [21].
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Figure 3: Adaptive network

2.2.4. ANFIS Architecture

For simplicity, we assume the fuzzy inference system under con-
sideration has two inputs x and y and one output z. Suppose that
the rule base contains two fuzzy if-then rules Takagi and Sugeno’s
type [17].

R1: if x is A1 and y is B1, then f1 = p1x + q1x + r1

R2: if x is A2 and y is B2, then f2 = p2x + q2x + r2

In this case, the type of reasoning is showed in figure 4, and
the corresponding equivalente ANFIS architecture in figure 5.
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Figure 4: Fuzzy reasoning
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Figure 5: Equivalent ANFIS architecture

The node functions in the same layer are of the same function
family as described bellow:

• Layer 1: Every nodei is a square node with a node function
O1

i = µAi(x), wherex is the input to nodei andAi is the
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linguistic label (small, large, etc) associated with the node
function. More concretely,O1

i is the membership function
of Ai, and it specifies the degree to which the inputx sat-
isfies the quantifierAi. Trapezoidal, triangular and bell-
shaped function are membership functions commonly used.

• Layer 2: Every node in this layer is a circle node, labelled
Π, which multiplies the incoming signals and send the prod-
uct out:
wi = µAi(x) · µBi(y), i = 1, 2.
Each node output represent the firing strength of a rule.

• Layer 3: Every node in this layer is a circle node labelled
N. Thei-th node calculates the ratio of thei-th rule’s firing
strength to the sum of all rules firing strengths:
w̄i = wi

w1+w2
, i = 1, 2

• Layer 4: Every node in this layer is a square node with a
node function:
O4

i = w̄i · fi = w̄i · (pix + qix + ri)

where{pi, qi, ri} is the parameter set for each node in layer
4.

• Layer 5: The single node in this layer is a circle node, la-
belled E, that computes the overall output as the summation
of all incoming signals:

O5
i = output =

P
i w̄i · fi =

P
i wi·fiP

i wi

Thus, we have constructed an adaptive network which is func-
tionally equivalent to a fuzzy inference system. More information
about ANFIS architecture can be found in [22].

3. EXPERIMENT EVALUATION

First of all, the audio test database is carefully prepared. The
speech data come from news programs of radio and TV stations,
as well as dialogs in movies, and the languages involve English,
Spanish, French and German with different levels of noise, es-
pecially in news programs. The speakers involve male and fe-
male with different ages. The length of the whole speech data is
about an hour. The music consists of songs and instrumental mu-
sic. The songs cover as more styles as posible, such as rock, pop,
folk and funky, and they are sung by male and female in English
and Spanish. The instrumental music we have chosen covers dif-
ferent instruments (piano, violin, cello, pipe, clarinet) and styles
(symphonic music, chamber music, jazz, electronic music). Some
music pieces in movies are also included, which are played by
multiple different instruments. The length of the whole music data
is also about an hour.

Next, we intend to assess the speech/music discrimination abil-
ity of the proposed feature. To achieve such goal, comparison with
the timbral features proposed in [11] is performed. The WLPC-SC
feature is separately compared to all timbral texture features pro-
posed in [11]. The vector for describing our psychoacoustic based
feature consist of the mean, the variance and the skewness over
each texture window.

The following specific features are used in [11] to represent
timbral texture: Spectral Centroid (SC), Spectral Rolloff (SR),
Spectral Flux (SF), Time Domain Zero Crossings (ZC), Mel Fre-
quency Cepstral Coefficients (MFCC) and Low Energy (LE) fea-
ture [11]. The last one (LE) is the only feature that is based on
the texture window rather than the analysis window. Note that
WLPC-SC is also based on the analysis window. Table 1 shows

the classification accuracy percentage results when WLPC-SC is
compared to the timbral features.

FEATURE SPEECH MUSIC GLOBAL

(%) (%) (%)
SC 94.60 95.70 95.21
SR 94.25 94.37 94.27
SF 90.19 89.55 89.85
ZC 93.66 91.09 92.32
MFCC 96.30 96.92 96.70
LE 92.28 89.45 90.81
WLPC-SC 95.25 95.50 95.40

Table 1: Classification accuracy percentage. WLPC-SC vs. tim-
bral features

The results in table 1 are obtained by using ANFIS as classi-
fier, which is properly trained and adjusted. The fuzzy inference
system is zero-order type, because we have considered a constant
as the consequent part of the fuzzy if-then rules. We have used
bell-shaped functions as membership functions, and three fuzzy
sets (low, medium and high) for each input variable (mean, vari-
ance and skewness of the WLPC-SC feature computed each 1 s-
length texture window). Fifty iterations have been performed for
training the ANFIS system.

At the sight of the results in table 1, we can say that the pro-
posed feature performs better than most of the timbral features
in [11] for speech/music discrimination. The Spectral Centroid
(SC) performs almost as well as the Warped LPC-based Spectral
Centroid (WLPC-SC), while the Mel Frequency Cepstral Coeffi-
cients (MFCC) give a little better accuracy percentages. The good
discrimination ability provided by the SC and MFCC features is
achieved at the cost of a complexity increase regarding the WLPC-
SC feature, which is much higher in the case of the MFCC feature.

Note that WLPC-SC does not require a DFT computation,
while SC and MFCC need this computation. As shown in table
1, the proposed feature achieves high accuracy percentages while
maintaining the complexity at a reduced degree.

The results in table 1 can be improved if transformation of
the feature space is accomplished. Principal Component Analy-
sis (PCA) and Linear Discriminant Analysis (LDA) are very often
used methods for feature space transformation, yielding LDA to
higher accuracy percentages than PCA because it achieves a better
class separation.

Finally, the behavior of ANFIS for speech/music discrimina-
tion is assessed by comparing it to other commonly used classi-
fiers. Table 2 shows the classification accuracy percentages when
ANFIS is compared to classical statistical pattern recognition clas-
sifiers, such as GS, GMM andk-NN based classifiers. More com-
plex classifiers, such as SVM and RBF-NN, are also considered
for comparison. The results have been obtained using the mean,
variance and skewness of the WLPC-SC feature computed each 1
s-length texture window. No transformation of the feature space
is accomplished, and the same audio database has been considered
for testing the different classifiers.

The results in table 2 show the good behavior of ANFIS for
speech/music discrimination, which implies that fuzzy-based clas-
sifiers can be an interesting alternative to classical SPR classifiers
and even to more sophisticated classifiers, such as those based on
SVM and RBF-NN.
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CLASSIFIER SPEECH MUSIC GLOBAL

(%) (%) (%)
GS 87.15 95.27 91.38
GMM 94.67 92.73 93.63
k-NN 91.50 94.55 93.09
SVM 95.07 94.36 94.71
RBF-NN 94.50 94.06 94.20
ANFIS 95.25 95.50 95.40

Table 2: Classification accuracy percentage. ANFIS vs. other clas-
sifiers

As expected, classical SPR classifiers provided the worst re-
sults between all evaluated classifiers, being the GS classifier the
worst ranked and the GMM one the best ranked between the SPR
classifiers. Note that GMM and k-NN classifiers report very low
differences. As also expected, SVM and RBF-NN behave very
well for speech/music discrimination with a slight difference in fa-
vor of SVM. The highest classification accuracy percentages cor-
respond to the ANFIS system. Slightly better results (up to 1%
of improvement) can be obtained whether the number of iterations
in the training stage of the system is increased (up to 300 itera-
tions). Although ANFIS provides the best results between all the
evaluated classifiers, it has an important drawback, which restricts
its application scope. The complexity of the system exponentially
grows with the number of input variables, becoming unfeasible
when this number is high enough. However, further research has
to be carried out in such direction.

4. CONCLUSIONS

The paper presents an effective approach based on an Adaptive
Network-Based Fuzzy Inference System (ANFIS) for the classi-
fication stage required in a speech/music discrimination system.
A new simple feature, called Warped LPC-based Spectal Centroid
(WLPC-SC), is also proposed. To evaluate the performance of
ANFIS for discriminating speech and music, comparison to classi-
cal SPR classifiers and more sophisticated classifiers, such as those
based on SVM and RBF-NN, is performed. Each classifier is eval-
uated using different input parameters. The results reported are the
best among the trials. ANFIS provided the best results between all
the evaluated classifiers and, as expected, classical SPR classifiers
provided the worst results. The classification accuracy percentage
achieved by the ANFIS system is above 95% for a wide range of
audio styles, which shows the good discriminating power of the
proposed approach.
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[14] Härmä, A., Karjalainen, M., Savioja, L., V̈alimäki, V., Laine,
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