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ABSTRACT 

Long-term musical structures provide information concerning 
rhythm, melody and the composition. Although highly musi-
cally relevant, these structures are difficult to determine using 
standard signal processing. In this paper, a new technique 
based on the time-domain empirical mode decomposition is 
explained which enables us to analyse both short-term infor-
mation and long-term structures in musical signals. It provides 
insight into perceived rhythms and their relationship to the 
signal. The technique is explained, and results are reported and 
discussed. 
Keywords: Empirical Mode Decomposition (EMD), Music 
Analysis, Santur, Long-term Structures, Fundamental Fre-
quency, Rhythm. 

1. INTRODUCTION 

The Fourier transform has two severe restrictions: stationarity 
and linearity. As an alternative, the wavelet, which is a multi-
ple-scale transform, can be used to analyse the non-stationary 
signals, but still assumes the linearity condition. The recently 
developed Hilbert-Huang Transform (HHT) can be used as a 
reliable means to analyse non-linear non-stationary signals. 
The key component of HHT is the Empirical Mode Decompo-
sition (EMD), which decomposes the signal to a summation of 
zero-mean AM-FM1 components, called Intrinsic Mode Func-
tions (IMF) [1].  
This paper concerns an extension of the EMD applications to 
the realm of musical signal processing. Lerdahl and Jackendoff 
[2] define four main musical structures:  
 

• Grouping structure to explain the segmentation of 
music as motives, phrases, themes, etc…  

• Metrical structure, the structure of the strong and the 
weak beats.  

• Time-span reduction, which is the rhythmic structure 
according to which the fundamental frequencies are 
heard.  

• Prolongational reduction which expresses the sense 
of tension and relaxation in music and shows the 
harmonic and melodic continuity and progression.  

 

                                                           
1 The Modes may contain Amplitude or Frequency Modulated 
components. 

Using the EMD, such hierarchic structures will be seen, where 
each empirical mode is a reduced version of the preceding 
modes. EMD can be used both for short-term measurements 
like fundamental frequency, chord and onset, and long-term 
structures like melody, rhythm and tempo contours. One ad-
vantage of directly obtaining the long-term structures, rather 
than calculating them through temporal analysis (e.g. deter-
mining tempo through the onsets) is to avoid having errors in 
temporal measurements transfer to errors in estimation of the 
long-term structures.  
Other audio signal processing applications of the empirical 
modes may be segregation of polyphonic texture, filtering [4], 
noise reduction [5] and compression of the audio signal by 
omission of the perceptually unimportant modes.  
This paper is organized as follows. Section 2 introduces the 
EMD. Simulated experiments on various audio signals are 
described in Section 3. We demonstrate that these experiments 
reveal the long-term structures as described by Lerdahl and 
Jackendoff [2]. Section 4 concludes the article with a discus-
sion of future research. 

2. EMPIRICAL MODE DECOMPOSITION 

Empirical Mode Decomposition is an adaptive tool to analyse 
non-linear or non-stationary signals which segregates the 
constituent parts of the signal based on the local behaviour of 
the signal. No pre-processing is required since it is able to 
analyse non-zero mean signals, and is suitable to analyse the 
riding waves which may have no zero-crossing between two 
consecutive extrema. It can be used as a filter bank [4], and for 
signal period analysis [6]. 
Unlike the Fourier and wavelet transforms, EMD has no fixed 
basis. It is similar to PCA and ICA in that the basis for the 
decomposition is signal-dependent. EMD involves calculating 
the IMFs for the signal, where the IMFs must satisfy the fol-
lowing two conditions:  
 
1) The number of extrema and the number of zero-crossings 
must either be equal or differ at most by one. That is, there is 
only one extremum between two zero-crossings. 
2) At any point, the mean value of each IMF must be zero.  
 
The Intrinsic Mode Functions are calculated by performing the 
following sifting process [1]: 
 
1- Through local analysis of the signal, all the minima and 

maxima are located. An interpolation function connects all 
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the maxima; the same is done for the minima. This gives 
upper and lower envelopes for the signal. 

2- The local mean (the mean of the upper and lower enve-
lopes) is calculated: )(1 tm  

3- The local mean is subtracted from the original signal to 
obtain the local details:   

                 )()()( 11 tmtXth −=                  (1) 
4- )(1 th  then becomes the new signal and the sifting proc-

ess, steps 1 through 3, are repeated until the mean of the 
local detail, due to a stopping criterion, becomes negligi-
ble; a threshold must be assigned for this Variance be-
tween two consecutive results: 
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Where )(1 th k  is the result of the kth iteration on equation (1). 
The value of this threshold can be set between 0.05 and 0.3 
[1,3].  
The maximum permissible number of iterations is another 
stopping criterion. Its value can be chosen between 4 and 10 to 
yield meaningful modes [3]. A high value for the maximum 
number of iterations causes extra calculations and may lead to 
over-decomposition of signal.  
Once a stopping criterion is met, the first residue r1 is ob-
tained. It is the first IMF. 
5- The residue in step 4 is subtracted from the signal, and 

then steps 1-5 are performed to calculate the next IMF. 
6- The algorithm iterates on step 5, until it becomes a mo-

notonous function that cannot produce any new IMF. 
It has been shown that, for estimation of the signal envelopes, 
using cubic spline interpolation yields better results than linear 
or polynomial interpolations [3]. The resulting curve is suffi-
cient for estimation of the local mean, while avoiding the 
‘over-decomposition’ phenomenon. 
The original signal may be re-constructed using the following 
summation: 
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Where ( )IMF i  is the ith Intrinsic Mode Function; n is the 
number of the Modes; and r_n is the last residue (residue of the 
nth mode). 
In practice the interpolation in step 1 will not be perfect. This 
is due to insufficient data, and the uncertainty in the end-
values of the envelopes. Furthermore, it is important to have 
enough samples for the peak detection step. Otherwise we will 
face the resulting error in the calculated modes. 
There are 3 main issues with this procedure: how to define the 
stopping criteria, how to detect peaks, and how to deal with 
end effects in construction of the envelope. 
The end effect has been discussed in several previous papers 
on the EMD[1,3-5]. It pertains to the difficulty in estimation of 
the bottom and top envelopes of a signal near the beginning or 
end of the signal. The envelopes are typically created using 
cubic spline interpolation, but at the endpoints there is not 
enough data to perform a cubic spline.  

Huang[1] suggested adding false peaks such as to yield typical 
waveforms at each end. If the peaks occur at 1 2( ), ( )...t P t P , 
then this may be accomplished by setting a peak at  

0 1 2 1( ) ( ) [ ( ) ( )]t P t P t P t P= - -           (4) 
And similarly, setting a peak after the last peak. It may be 
necessary to add several peaks near each endpoint. Other 
methods include setting a peak at the first data point with 
amplitude equal to that of the first data point, this guarantees 
that the envelope converges onto or near the data. We have 
tried both methods and several more, but none guarantee suc-
cess.  
The accuracy of the peak detection algorithm also significantly 
affects results. Peaks can be missed, false peaks can be added, 
and peak amplitudes can be miscalculated. These result in a 
poor envelope. A single false peak or grossly miscalculated 
peak amplitude can result in an error in the envelope which 
perpetuates, and may even grow, through subsequent shiftings 
and calculation of modes. 
Detection of peaks is improved by having a high sample rate. 
A sample rate of fs is sufficient to resolve frequencies up to 
fs/2, but that implies that frequency content near fs/2 will have 
only 2 points per period. This makes accurate detection of 
peaks very difficult. One possible solution is low-pass filter-
ing, since this can smooth out the most difficult peaks.  
The stopping criteria for sifting is not so important, in that 
different choice of stopping criteria will yield different results, 
but not necessarily incorrect results. The main criteria defined 
by Huang are that the component has no riding waves and that 
the mean envelope is zero [1]. No riding waves simply means 
that there are no maxima below zero and no minima above 
zero. This also implies that the number of zero crossings dif-
fers from the total number of maxima and minima by at most 
one. However, the reverse is not necessarily true. The second 
criterion for stopping the sifting, that the mean envelope is 
zero, is far more difficult. Errors in peak detection and end 
effects may result in significant deviation of the mean enve-
lope, and hence lead to more sifting. 
The implementation of the EMD that has been performed here 
is based on freely available MATLAB code by Rilling, et. al. 
[3] Spline interpolation has been used with false peaks added 
near the endpoints. Stopping criteria was typically set to .1 in 
Equation (2), and no pre-processing was applied.  

3. EXPERIMENTS & RESULTS 

Using a computer with a sound card, and an ordinary micro-
phone, samples of 16-bit precision at a sampling rate of 44.1 
kHz where taken. The samples were performed by the first 
author on a Santur instrument. The Santur is a trapezoidal 
string instrument, played by a pair of delicate hammer sticks 
[7]. This instrument originated in Iran and was later brought to 
other countries like India, China, Thailand, Greece, Germany, 
UK, Ireland and USA. In English it is often referred to as a 
dulcimer.  
As an example, a single sample of A4 note with a fundamental 
frequency of 440 Hz is recorded. Figure 1 shows the variation 
of harmonic content through time (2D spectrum).  
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Figure 1 spectrum of the note A4. 

 
The amplitude of a harmonic component may change due to 
the resonance characteristics of the strings, the instrument 
body and also the ambient.  Figure 2 represents a window of 
the A4 sample in frequency domain. The note begins at sample 
no. 1060 and it rises up to sample no. 1256. To bypass the 
transient part of the signal, the analysis window starts at sam-
ple no. 4500. Using a 1024 point window, the pitch and the 
major harmonics can be seen in figure 1 and figure 2.  
 

 
Figure 2 Frequency domain representation of the note A4. 

 
The same portion of the signal has been analysed by the EMD. 
It is decomposed to 6 modes and a residue (figure 3). The first 
IMF, contains the 6th, 16th, and 20th harmonics of the tone 
A4; IMF2 contains the 4th harmonic; IMF3 the 2nd harmonic; 
IMF4 the fundamental frequency; IMF5 half the fundamental 
frequency; and IMF6 one-fourth of that; it shows an increasing 
trend in the final residue. Existence of the half-pitch in the 
signal can be interpreted as the sympathetic vibration of A3 
strings. The quarter-pitch may be created by the superposition 
of the other vibrations. The amplitudes show the contribution 
of each mode in the main signal. 

 
Figure 3 Decomposition of the sample in figure 1: The signal, 

its 6 IMFs and the residue 
 
In another test, two-note chords comprised of A4-C5 and C5-
E5 were played several times as a retarding rhythmic pattern 
(figure 4 and 5-a). The fundamental frequencies for C5 and E5, 
are 523.25 Hz and 659.25 Hz respectively [7].  
 

 
Figure 4 A4-C5 and C5-E5 chords 

 
The first few IMFs contain the harmonic information, while 
the rest show the long-term behaviour of the signal. Analyzing 
just the beginning of the IMFs, it can be observed that IMF1 
contains the 5th harmonic for A4 and the 4th harmonic for C5; 
IMF2, 5th harmonic of C5; IMF3, 2nd harmonic of A4; IMF4, 
the fundamental frequency of C5; IMF5, half the fundamental 
frequency of C5; IMF6, half the fundamental frequency of A4.  
It is interesting that the period of IMF11 which is changing 
through time shows the onset times, while the periods of 
MIF13 & IMF14 decrease as the tempo decreases, so they may 
be used for tempo tracking. IMF13 has a period which is 6 
times the distance of the first 2 notes, so it is attempting to 
arrange the notes in groups of 6 as the time span segmentation 
suggested by Lerdahl and Jackendoff [2]. The same can be said 
for IMF14 but with relatively larger period (10 notes). The 
residue shows a decreasing trend as the tempo decreases. 
Figures 5-a through 5-d show the signal, IMF4 (C5’s funda-
mental frequency), IMF13 and IMF14 respectively. 
So using the EMD a rhythmic and harmonic analysis of the 
signal can be performed. The obtained modes are hierarchi-
cally ordered. The EMD operates as a filter bank with noise 
and higher frequency components in the first few IMFs, and 
the lower frequency components in the lower modes. The 
residue shows the final trend of the signal. 
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(5-a) 

 

     
(4-b) 

 
(4-c) 

 
(4-d) 

Figure 5  a)  A decreasing tempo sequence of A4-C5 and C5-
E5 chords  b) IMF4 (the fundamental frequency of C5)  c) 

IMF13 d) IMF14 

4. CONCLUSIONS 

This work is concerned with use of the Empirical Mode De-
composition for extracting meaningful musical structures from 
audio. The EMD is a powerful means for the analysis of 
nonlinear non-stationary signals. It decomposes the signal to a 
summation of zero-mean AM-FM components, called Intrinsic 
Mode Functions. EMD has no analytical representation and it 
is based on the local behaviour of the signal. It can be used for 
the analysis of long-term structures such as rhythm and mel-
ody which are difficult to determine using standard frequency 
domain or wavelet techniques. It can also be used for the 
analysis of fundamental frequency and the temporal measure-
ments.  
Using the EMD, each empirical mode is a reduced version of 
the preceding modes (figures 3 and 5). So, it provides a hierar-
chical representation of a musical piece which can be used for 
noise reduction, or segregation of different frequency bands in 
an audio signal. Future work may be determining the scale, 
key or genre of a musical piece. Such work will enable auto-
mated music labeling systems.  
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