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ABSTRACT

In this paper, we first define the scenario of a generic acoustic hu-
man/machine interface and then formulate the according funda-
mental signal processing problems. For signal reproduction, the
requirements for ideal solutions are stated and some examples for
the state of the technology are briefly reviewed. For signal acquisi-
tion, the fundamental problems ask for acoustic echo cancellation,
desired source extraction, and source localization. After illustrat-
ing to which extent acoustic echo cancellation is already a solved
problem, we present recent results for separation, dereverberation
and localization of multiple source signals. As an underlying moti-
vation for this synoptic treatment, we demonstrate that the consid-
ered subproblems (except localization) can be directly interpreted
as signal separation or system identification problems with varying
degrees of difficulty, which in turn determines the effectiveness of
the known solutions.

1. INTRODUCTION

Over the last century human/machine interaction became a more
and more common part of our everyday life and along with in-
creasingly complex machines the demand for more ’human’ in-
terfaces grew continuously. With speech still being the most ef-
ficient modality for communication involving humans, and audio
being an ubiquitously desired commodity, the acoustic component
very often plays a dominant role in the design of human/machine
interfaces. For many situations, the ideal ’natural’ acoustic hu-
man/machine interface should allow the users to be untethered,
mobile and distant from the signal acquisition and reproduction
equipment without the need to wear any extra devices. Such a sit-
uation is illustrated in Fig.1 where we consider several users in an
acoustic environment with multichannel sound reproduction and a
microphone array for multichannel audio acquisition. On the re-
production side, vector v contains L loudspeaker signals, which
are derived from (or identical with) the vector of K source sig-
nals u. Vector w describes the 2M signals at the ears of the M
listeners, which in the ideal case correspond to a set of desired sig-
nals wd. Correspondingly, s represents the signals emitted by M
desired sources Si, which should be captured by N microphones.
Vector n accounts for any unwanted acoustic signals, whose con-
tributions to the microphone signals and the ear signals are termed
xn, wn, respectively. From the vector of N microphone signals x,
the acquisition part of the digital signal processing unit G extracts
a vector z, whose elements are ideally identical to P ≤ M desired
signals si. The matrices Hwv ,Hxv , Hxs describe the transfer
characteristics between the respective vectors. In this general sce-
nario, the tasks for the digital signal processing (DSP) unit G are
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Figure 1: Multichannel acoustic human/machine interface.

simply stated:

• The reproduction part should deliver well-defined desired
signals wd to the listeners’ ears.

• The signal acquisition should extract the desired source sig-
nals s and determine the source locations.

In realistic environments these tasks involve obviously three sources
of problems, which have to be addressed by the DSP algorithms:
Noise, echoes and reverberation, and echoes of loudspeaker sig-
nals feeding back into the microphones.

The setup in Fig.1 covers a multitude of applications, with
varying emphasis and difficulty regarding the different problems
of the general scenario. A wide class of applications can be sum-
marized as hands-free equipment for telecommunication and hu-
man/machine dialogues involving speech recognition systems: For
mobile phones, personal digital assistants and mobile computing
devices, hands-free operation is becoming increasingly popular.
In cars, hands-free equipment is now often an integral part of the
user front-end for telephony, infrastructure control, and naviga-
tion systems. Seamless voice interaction with desktop comput-
ers, multimedia terminals, and game stations is another field of ap-
plications with a large market potential. Teleconferencing equip-
ment, now ranging from desktop computer accessories over es-
pecially equipped rooms to large auditoria has been one of the
initial applications [1, 2]. Telecollaboration and teleteaching sys-
tems may be viewed as belonging to the same category. Another

DAFX-1

- DAFx'05 Proceedings - Keynote 1



Proc. of the 8th Int. Conference on Digital Audio Effects (DAFx’05), Madrid, Spain, September 20-22, 2005

group of hands-free applications with even greater emphasis on hu-
man/machine voice dialogue includes smart homes, home theatre
systems, smart meeting rooms, and home care for elderly people,
as well as interactive museums and exhibitions.

Other areas with a stronger emphasis on the reproduction part
may be summarized as audio communication applications and in-
clude cinema sound systems, equipment for virtual reality, stages
and recording studios, or systems for telecollaboration of musi-
cians.

A third and increasingly important class of applications is ded-
icated to acoustic surveillance, where the signal acquisition is the
dominant part and the desired sources are usually non-cooperative.
Here localization and signal extraction (e.g., for subsequent clas-
sification) will be the main goals of signal processing at the hu-
man/machine interface.

In the following, we first review the fundamental problems
for signal processing in our scenario, thereby following partly an
earlier presentation [3]. After discussing briefly the state of the
art in signal reproduction, we concentrate on signal acquisition
techniques and present some recent results with some bias towards
work in our own research group.

2. FUNDAMENTAL SIGNAL PROCESSING PROBLEMS

For the following we assume - unless otherwise stated - that the
components of the acoustic scenario can be modelled by linear,
generally time-varying discrete-time systems, so that we can de-
scribe the input/output relations by matrix equations. Accord-
ingly, the MIMO (’multiple input/multiple output’) system G per-
forms linear convolutions on the time-domain signals ui, xj (i =
1, . . . , K; j = 1, . . . , N ). Decomposing G into submatrices Gvu,
Gvx, Gzu, Gzx, we can write1:�

v

z � = G ∗

�
u

x � =

�
Gvu Gvx

Gzu Gzx � ∗

�
u

x � . (1)

The signals at the listeners’ ears, w, and the microphone signals,
x, are then given by

w = Hws ∗ s + Hwv ∗ v + wn, (2)

x = Hxs ∗ s + Hxv ∗ v + xn. (3)

We emphasize here that the elements of the matrices H(·) are im-
pulse responses which are mainly characterized by the acoustic
environment with a reverberation time T60 [5] in the range of hun-
dreds of milliseconds. Therefore, appropriate digital FIR filter
models require several hundred to several thousand coefficients,
depending on T60 and the sampling rate fs. (As a rule of thumb,
LG = fs · T60/3 coefficients of the impulse response are needed
for a modelling error smaller than -20dB relative to the entire im-
pulse response energy. As an example, for a usual office and tele-
phone signal bandwidth, fs = 8kHz, LG = 1000 is a typical
choice.) Besides the mere length of the impulse responses, the ac-
cording discrete-time transfer functions exhibit nonminimum phase

1By defining y = A ∗ x as a matrix multiplication with ele-
mentwise convolution, the elements yi(k) of y are given by yi(k) =� N

j=1

� ∞
n=−∞ aij(k − n)xj(n) assuming that the impulse response

aij(k) is time-invariant. The inverse A−1 of matrix A is defined by
A−1

∗ A = I · δ(k), with I as identity matrix. and δ(k) as discrete-
time unit impulse. For rank-deficient or non-square matrices A, A−1 is
the pseudoinverse (see [4]).

and many zeroes close to the unit circle, which makes inversion
mostly difficult and impractical. Moreover, acoustic impulse re-
sponses are strongly time-variant, not at least due to the temperature-
dependency of sound velocity. Note also that Hwv,Hws include
the head related transfer functions of the listeners.

Based on the system representation given by Eqs.1,2,3, we an-
alyze now the fundamental problems to be solved by the signal
processing unit G. Thereby, we may safely assume that the speech
signals si and the reproduction signals ui (as contained in v) are
mutually statistically independent and also independent from the
elements of the noise vectors wn, xn. Note also, that even if G

connects inputs and outputs by linear filtering, G will usually in-
corporate nonlinear algorithms for determining these filters.

2.1. Sound reproduction

The goal of providing desired signals wd to the listeners’ ears may
come in two versions: In the first case, local noise should be sup-
pressed but other desired sources Si should still be audible in a
natural way (as probable, e.g., in a teleconferencing environment).
In the second case, e.g. in a cinema, the listeners will want to hear
only sound resulting from the reproduction signals u and no inter-
ference from noise or other local sources Si. The first case can be
expressed as

w
!
= wd = Hd ∗ u + ws, (4)

where ws = Hws ∗ s. Introducing Eqs.1,2 leads to

Hwv ∗ (Gvu ∗ u + Gvx ∗ x) + wn

!
= Hd ∗ u. (5)

and implies two kinds of signal processing tasks:
A. Dereverberation. Matrix Gvu has to equalize the influ-

ence of the room impulse responses Hwv on u, and if perfectly
equalized reproduction should be independent of the signal vector
u, Hwv must be inverted:

Hwv ∗ Gvu ∗ u
!
= Hd ∗ u =⇒ Hwv ∗ Guv

!
= Hd

=⇒ Gvu

!
= H

−1
wv ∗ Hd. (6)

Aside from a necessary delay in Hd for assuring causality of Gvu,
the main problem is that Hwv is in general not known and cannot
easily be identified due to lack of a reference signal at the listen-
ers’ ears (assuming, of course, that the users do not wear a micro-
phone at the ear). Thus, we face a ’blind deconvolution’ problem,
where we cannot even observe the system output. A possible rem-
edy could be to measure suitable room impulse responses and the
personal head related transfer functions in advance, and approxi-
mate Hwv from these. However, even if the individual impulse
responses from the loudspeakers to the ears are exactly known,
their inversion is not pratical due to the zeroes close to the unit cir-
cle. Here, the MINT concept [6] can actually solve the inversion
problem with finite-length filters using several loudspeakers for a
single ear, if the individual transfer functions in Hwv exhibit no
common zeroes.

B. Interference cancellation. According to Eq.5, we must
also cancel the interference at the ear via Gvx to satisfy

Hwv ∗ Gvx ∗ x + wn

!
= 0. (7)

For that, we have to derive reference information about the unde-
sired noise at the ear, wn, from x. This requires that the noise
components at the ears wn must result from a coherent sound field
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so that we can use the matrix Hxw to describe their relation to the
noise components at the microphones:

xn = Hxw ∗ wn. (8)

Now we assume that Gvx includes a linear signal separation unit
Gxnx, Gvx = Gvxn

Gxnx, to extract xn from x, so that

xn = Gxnx ∗ x. (9)

This assures that the cancellation signal only contains noise com-
ponents from x and that the cancellation condition can be written
as

HwvGvxn
GxnxHxwwn = −wn. (10)

If this should be met independently of the actual noise signals,
Gvx has to satisfy

Gvx = −H
−1
wvH

−1
xw, (11)

which implies always noncausality for Gvx , as Hwv,Hxw repre-
sent propagation paths of wave fields. For realizable causal Gvx ,
some extra delay must be introduced, and therefore the cancella-
tion can only be achieved for predictable noise signals at the ears,
as becomes obvious from Eq.10. Aside from periodic signals, this
is also given if the actual noise sources are close enough to the
microphones: If the propagation delay from the original source to
the ears is larger than the combined propagation delay from the
original sources to the microphones and from the loudspeakers to
the ears (plus the processing delay necessary in real DSP systems),
then the predicted signals can be used as input to Gvxn

instead of
xn. (Note that this needs to be fulfilled for all acoustic paths, and
obviously, does not comply with our typical application scenarios.)
Even with the causality problem solved, the determination of Hwv

and the predictors still constitute blind problems as in general no
reference signals at the sources for n and the sink w are available.
Note also that Eq.7 describes the well-known active noise cancel-
lation problem [7, 8], where great efforts are made to obtain useful
reference signals close to the noise sources and at the sink, and
success is usually limited to low frequencies and/or well-defined -
mostly stationary - interference.

For the second case, where the local human sources Si should
also be cancelled, the noise term wn in the above derivation must
only be complemented by the additional speech term ws, and we
have to assume that Gvx includes signal extraction units for both
xn,xs. The fundamental problem for Gvx becomes thereby even
harder, because, then, typically, human utterances such as speech
signals need to be predicted.

Although hands-free, distant-listening to audio signals via loud-
speakers was always a natural concept and evolved in parallel with
headsets from the very beginning, according current reproduction
systems do not solve the dereverberation problem nor do they can-
cel interference. Stereo or multichannel reproduction systems,
such as 5.1 surround systems, do typically not account automat-
ically for the specific local acoustic environment, Hwv,wn. In-
stead, the user is allowed to choose his own frequency-dependent
gain equalization, which corresponds to defining the elements of
the main diagonal of Gvu , and some mixing of input channels
ui, so that nondiagonal elements in Gvu are defined. With such
systems, a fully controlled listening experience is therefore only
possible in an anechoic, noise-free environment, and only at a cer-
tain position (’sweet spot’), which can be controlled by inserting
appropriate delays into Gvu .

Wave field synthesis [9, 10] overcomes the sweet spot prob-
lem by creating a well-defined sound field within an extended area
- so far in two spatial dimensions - using a large number of loud-
speakers (from dozens to hundreds), so that one may move freely
while listening and many listeners can enjoy the same spatial real-
ism, e.g., in a cinema. The desired transfer characteristics matrix
Hd is here typically filled with impulse responses, so that virtual
as well as remote real acoustic environments (e.g. concert halls,
churches) can be reproduced. The inversion of the local acoustics
Hwv can here be tackled by creating wave fields that explicitly
cancel reflected waves at all points of the listening space [11].

The second problem, active interference cancellation, has been
investigated for many years. However, for the given scenario, the
author is not aware of any successful concepts. Again, wave field
synthesis may have some potential here, as it does not rely on refer-
ence information from many points in space but reconstructs wave
fields from sampled closed contours [12].

Aside from all these efforts, the apparent imperfections in re-
production technology at the acoustic human/machine interface
are not prohibiting the acceptance and widespread enjoyment of
present products by the human listeners. This may partly be ex-
plained by psychoacoustics, so that the listeners do not always ask
for optimality subject to criteria as defined by system theory. Re-
moval of natural-sounding reverberance and local interference in
a listening space will often not even be expected. Moreover, suit-
able material for high quality reproduction usually undergoes care-
ful treatment by experienced and creative sound engineers so that
psychoacoustics is heavily exploited to enhance the listening ex-
perience, and realism as desired by the above signal processing
criteria will not be the first priority. Therefore, it remains an open
question to what extent the criteria in Eqs.6,7 must be met and
whether they should be modified to better fit psychoacoustics.

2.2. Acquisition

On the audio acquisition side, the acquired desired signals must
typically be suitable for reproduction in other listening spaces or
for recognition or interpretation by machines, and therefore the
undesired signal components in the output signal z are usually
much less tolerable than for the listeners in w. Although single-
microphone systems were always limited in their capability to sup-
press unwanted noise, reverberation, and echoes without distorting
the desired signals, multichannel acquisition gained momentum
only in the last few years with the availability of increasing and in-
expensive signal processing power and the increasing demand for
hands-free interfaces for various applications.

The aim for signal acquisition is obiously to extract a vector z

containing P separate and delayed source signals zi(k) ≈ sj(k) ∗
δ(k−k0), (i = 1, . . . , P ; j ∈ {1, . . . , M}), where the delay k0 ≥
0 is chosen to ensure causality of Gzx. Considering Eq.3, this
requires that the acoustic echoes of the loudspeaker signals must
be compensated, the contributions from local noise sources and the
respective other sources sk 6=j must be suppressed, and echoes and
reverberation of the desired source sj must be removed from the
microphone signals.

For notational convenience, we assume from now on P = M
and disregard output permutations so that we obtain from Eq.1 as
the requirement for ideal signal acquisition:

z = Gzu ∗ u + Gzx ∗ x
!
= s ∗ δ(k − k0).

To identify the individual problems, we introduce Eq.3 and note
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that the decomposition of x presumes that we have methods to
separate the components Hxs ∗ s,Hxv ∗ v, and xn, just as dis-
cussed for reproduction (see Eq.9):

z = Gzu ∗ u + Gzx ∗ (Hxs ∗ s + Hxv ∗ v + xn)

= (Gzu + Gzx ∗ Hxv ∗ Gvu) ∗ u + Gzx ∗ (Hxs ∗ s + xn)

!
= s ∗ δ(k − k0). (12)

From this, we can isolate three subproblems:
A. Echo cancellation. For compensating the feedback of the

reproduction signals u into the desired signals z, we obviously
have to ask for

(Gzu + Gzx ∗ Hxv ∗ Gvu) ∗ u = 0. (13)

From the viewpoint of remote communication partners sending u

and receiving z, this corresponds to cancelling the echoes of their
own signals. For signal-independent cancellation, Gzu needs to
fulfill

Gzu = −Gzx ∗ Hxv ∗ Gvu, (14)

which is obviously a MIMO system identification problem with
both input and output being observable. Note that actually only the
matrix Hxv describing the acoustic paths between microphones
and loudspeakers must be identified.

B. Source separation and dereverberation. In order to ex-
tract the original source signals from the convolutive mixtures in
each microphone, the sources need to be separated and dereverber-
ated such that ideally

Gzx ∗ Hxs ∗ s = s ∗ δ(k − k0) (15)

is obtained. This means that any signal-independent solution must
meet:

Gzx ∗ Hxs = IM,M · δ(k − k0), (16)

where IM,M is the M × M identity matrix. Therefore, we have
for the elements of the main diagonal of Gzx ∗ Hxs a multichan-
nel blind deconvolution problem similar to Eq.6, and for the off-
diagonal elements we have an interference suppression problem
similar to that of Eq.17.

C. Suppression of interfering noise. To remove the local
noise in the output vector z

Gzx ∗ xn = 0 (17)

must be met. Signal-independent solutions would require Gzx =
0, which, however, would also preclude the capture of the desired
signals. Thus, Eq.17 actually asks only for a signal separation
system fulfilling Eq.9, whose output is then subtracted from the
signals x.

Thus, similarly to signal reproduction, the subproblems in ac-
quisition involve essentially system identification problems and
signal separation/extraction problems. The separation of the vari-
ous components in x, i.e., Hxss, Hxvv, and xn is not only nec-
essary to suppress the noise signals itself, it is also a necessary
precondition for obtaining reference signals for the various system
identification problems, i.e., for determining Gzx, Gzu and Gxv .

With the given spatial diversity by several microphones, the
separation of x into its components can exploit orthogonality in
both the time/frequency and the spatial domain. The spatial do-
main is especially important, as the involved signals are usually not
orthogonal in time/frequency. This constitutes a major advantage
of the multichannel approaches over single-channel approaches for

acoustic human/machine interfaces. One should note, however,
that in time/frequency and also in the spatial domain, apertures
are finite and imply finite resolution, and sampling frequencies of
the apertures are limited, which implies aliasing. For determin-
ing the optimum, usually time-varying, spatiotemporal filters for
signal separation, we typically use a-priori knowledge (e.g., about
source positions), heuristic detection algorithms (e.g., for speech
activity at a certain time from a certain direction) or parameter es-
timation concepts based on (mostly short-time) signal statistics.

2.3. Localisation

The task of localizing and tracking active desired sources Si is
different from signal acquisition and reproduction, insofar, as the
output is not a desired signal resulting from modifying input sig-
nals, but position information as derived from analyzing the input
signals x. Clearly, extraction of the desired signals s should be
beneficial, and it seems obvious that knowledge of Hxs should
facilitate localization. The according techniques for our scenario
will be briefly reviewed when discussing recent advances for sig-
nal acquisition below.

3. SOME TECHNIQUES FOR SIGNAL ACQUISITION

Rather than attempting a comprehensive overview over the numer-
ous solutions for the four classes of problems in signal acquisition,
we present here a brief synopsis of basic techniques and some re-
cent results biased towards the work of the author’s research group.

3.1. Acoustic echo cancellation

For a convenient illustration of the basic mechanisms we assume
that the sound reproduction system Gvu is transparent, Gvu =
IK,K · δ(k), and consider the system identification problem only
for a single microphone signal and a single output signal (N =
P = 1) with Gzx = δ(k). (The application to microphone arrays
with N > 1 has been discussed in [13], and has been generalized
in [14].) Thereby, Eq.14 reduces to Gzu = −Hxv , where the
matrices are row vectors with K generally time-variant impulse
responses as elements:

Gzu = (g1(k), . . . , gK(k)) , (18)

Hxv = (h1(k), . . . , hK(k)) . (19)

Using an FIR model of length Lg we obtain for the estimate of the
echo (see Fig.2) �

y(k) = g
T (k)u(k), (20)

where

g(k) =
�
g

T
1 (k), . . . ,gT

K(k) � T

, (21)

u(k) =
�
u

T
1 (k), . . . ,uT

K(k) � T

, (22)

with the individual impulse responses and data vectors

gi(k) = � gi,0(k), . . . , gi,Lg−1(k) � T
, (23)

ui(k) = (ui(k), . . . , ui(k − Lg + 1))T , (24)

respectively. The estimation error reads:

e(k) = y(k) −

�
y(k), (25)
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where

e(k) =: z(k)|
s=0,xn=0 , y(k) =: x(k)|

s=0,xn=0 . (26)

Figure 2: Echo cancellation for K-channel reproduction

In order to follow the time-variance of the impulse response
hi(k), gradient-type adaptive algorithms are common to approxi-
mate the optimum Wiener solution g(k):

g(k) = g(k − 1) + k(k)e(k), (27)

where the ’Kalman gain’ vector k(k) determines the direction of
the adaptation. While for single-channel echo cancellation (K =
1) simple adaptation algorithms, such as the normalized least mean
square (NLMS) algorithm (corresponding to k(k) = αu/(uHu),
0 < α < 2, see [16]) are very popular, for multichannel echo can-
cellation (K ≥ 2), algorithms with improved convergence proper-
ties are necessary. This is due to the often strong, time-varying cor-
relation between the K input channels ui(k), which results from
the fact that the signals ui(k) are usually just different mixtures
of a common set of sources. As an alternative to the NLMS al-
gorithm, the RLS (’recursive least squares’) algorithm using the
Kalman gain vector k(k) = R−1

uu(k) ·u (with Ruu being the esti-
mated autocorrelation matrix of u) promises fastest convergence.
However, even here we have to improve the condition number
of Ruu, e.g., by an (ideally imperceptible) nonlinearity NLi (cf.
Fig.2) [17]. As alternatives to nonlinearities, time-varying allpass
filters [18] and the insertion of additive noise (e.g. by an audio
codec, such as MP3 or AAC, [19]) have been suggested. Obvi-
ously, none of these methods will comply with the quest for perfect
reproduction, and will be especially objectionable for large num-
bers of channels L, where they need to be applied more rigorously
in order to obtain sufficiently fast convergence.

As a direct inversion of the K · LG ×K ·LG matrix R−1
uu(k)

is still unrealistic for real-time implementations with K · LG =
1000 . . . 20000, approximative solutions in the DFT domain are
very attractive. In [15] an algorithm was presented which requires
only the inversion of LG matrices of size K × K instead of one
matrix of size (K ·LG)× (K ·LG), and thereby allows real-time
operation of a K = 5-channel echo canceller with K · LG >
20000 filter coefficients on an ordinary PC (Intel 1.7GHz, dual
processor board, sampling frequency 12kHz). In Fig.3 typical
convergence curves of the system error norm (∝ log10(‖Gzu +
Hxv‖

2/‖Hxv‖
2)) and the echo suppression (ERLE) are depicted

for various K. The ERLE curves demonstrate that with proper

parametrization echo suppression need not deteriorate with increas-
ing channel number K. While this configuration is suitable, e.g.
for voice-controlled home-theatres, further research is needed for
more demanding environments, such as telecollaboration of musi-
cians playing in distant studios, where L > 5 and fs ≥ 32kHz
must be expected and, additionally, the signal delay must be mini-
mum.

As one option for a very large number of channels such as in
wave field synthesis, a new echo cancellation concept based on
wave domain adaptive filtering (WDAF) [11, 20] is able to per-
form echo cancellation in a transform domain with eigenfunctions
of the sound fields as basis functions. Aside from many loud-
speakers, this requires also a large number of microphones (e.g.,
L = N = 48 in an experimental systems) to sample the wave
fields and provide the reference information for adapting the echo
path models [20].

In some common applications, especially with low-cost loud-
speakers and low-power amplifiers, the linear model for the feed-
back path Hvx is not valid any more. In [21], the matrix nota-
tion as used so far for linear systems was extended to incorporate
Volterra filters, and an efficient DFT domain algorithm was pre-
sented which allows modelling of loudspeaker nonlinearities by
second-order Volterra filters [22]. Although nonlinearities in loud-
speakers and amplifiers are not really memoryless, it was shown,
that echo path models with a memoryless nonlinearity can still be
effective in some practical cases [23]. Especially so-called power
filters, where the signal samples are raised to different powers and
the resulting sequences are then passed through parallel linear fil-
ters, can provide effective models for nonlinearities as they may
occur in our scenario [24].

3.2. Signal extraction and interference suppression

In the following we consider multichannel techniques for deter-
mining spatiotemporal filters Gzx to approximate Eqs.17, 15 and/or
16. Seemingly unrelated at first glance, they pursue the same goals
and differ essentially regarding the used reference information and
optimization criteria.

3.2.1. Beamforming

Beamforming microphone arrays aim at both the signal separation
and the suppression of noise and interference, and ideally extract
undistorted desired source signals. A general treatment of theoret-
ical concepts, alternative approaches, and other aspects of design
and applications can be found, e.g., in [25, 26, 27]. Beamform-
ing essentially forms a ’beam’ of increased sensitivity towards the
location of a desired source and simultaneously tries to suppress
all other sources. If not known, the position of the desired source
must be determined by localization methods as discussed below. If
several desired sources need to be extracted, several beamformers
can work in parallel using the same microphone signals [28], how-
ever, for adaptive beamformers involving estimation of statistical
quantities for individual sources the estimation will suffer from the
interference of additional sources.

For a single desired source, the components xi of x are in the
simplest case individually delayed and summed such that compo-
nents of the desired source signal are summed up coherently while
signals from other locations are summed with generally nonzero
phase differences and cancel out to a certain degree (’delay and
sum beamformer’, DSB). This supposes that the location or at least
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Figure 3: Convergence of DFT-domain adaptation after [15] for music signal reproduction with K = 2, 3, 4, 5 channels. System error
norm (left) relative to NLMS(dashed lines), echo return loss enhancement (ERLE, right)

the direction of arrival (DOA) of the desired source is known. Us-
ing filters instead of delays, ’filter and sum’ beamformers are ob-
tained, which allow a frequency-selective modification of the spa-
tial filtering characteristics of the plain DSB. Such beamformers
are still data-independent as long as they do not account for the
actual signal statistics of x.

Current techniques for our scenario use data-dependent beam-
formers, where the spatiotemporal filtering Gzx is mostly designed
to either pursue a minimum mean square error (MMSE) criterion
or to aim at minimum output variance while ensuring distortion-
less response (MVDR) for the desired source [29]2. MMSE crite-
ria lead to a multichannel Wiener filter solution, with the inherent
problem that the desired signal will be distorted while the suppres-
sion of noise and interference is maximized [30].

On the other hand, MVDR criteria ensure an undistorted de-
sired signal as long as the source position is exactly known, by
imposing a constraint on the optimization. An example for an ar-
ray response, i.e., the magnitude gain as a function of DOA and
frequency, is shown in Fig.4. As can be seen, the interferer is
strongly suppressed, while the desired direction Θ = 0 is not at-
tenuated. Note also that at low frequencies there is almost no at-
tenuation of signals from any direction, which is due to the limited
size of the aperture of the microphone array relative to the wave-
length. To circumvent the constraint optimization problem, the so-
called Generalized Sidelobe Canceller (GSC) has been proposed
[32], which will cancel the desired signal, however, if the target
direction is not precisely known. A robust version of the GSC
as depicted in Fig.5 has been developed in [33] and further been
refined using a DFT-domain implementation [34]. The GSC prin-
ciple [32] foresees that a signal-independent beamformer c filters
the sensor signals so that the desired signal arriving via the direct
path remains undistorted, whereas, ideally, other directions should
be suppressed. In the lower path, an adaptive blocking matrix B

aims at suppressing all components originating from the desired
signal si, so that only noise components appear at the output of
B, and thereby essentially approximates Eq.9. From the outputs
of B the adaptive interference canceller a derives an estimate for

2Note that the MMSE and MVDR criterion is defined for stationary
processes and based on statistical averaging whereas for nonstationary pro-
cesses and real data samples, the criteria must be modified, thereby offering
many variations [26]
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Figure 4: Array response (beam pattern) of an MVDR beamformer
for a linear equispaced array with M = 9 sensors, with spacing
d = 4cm, to an interferer emitting white noise from Θ = 0.3π
(with permission from [26]).

the remaining noise component in the output of c, by minimizing
an estimate of the variance of the output zi. Obviously, the fixed
beamformer c and the interference canceller a jointly perform in-
terference suppression in the sense of Eq.17. The resulting signal
zi will also be slightly dereverberated relative to Gxs ∗ s as the
fixed beamformer b will attenuate reflections arriving from atten-
uated angles of incidence.

As for the separation of the noise components, a time-variant
blocking matrix B can use spatial, spectral, and temporal selec-
tivity to isolate the noise and suppress the desired signal. The
adaptation of the blocking matrix B allows to follow movements
of the desired source Si and thereby provides robustness against
desired signal cancellation: Otherwise, if the desired signal leaks
through the blocking matrix, it will be treated as a noise compo-
nent and subtracted from the output of c. The spatial selectivity of
B is very beneficial as it allows to completely suppress the signal
arriving from the assumed source direction, but it usually cannot
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Figure 5: Structure of a robust Generalized Sidelobe Canceller.

completely suppress reverberation of the desired signal. Therefore,
adaptation of the blocking matrix B has to exploit temporal selec-
tivity: It should only be adapted during periods when the desired
signal is dominant. Likewise, the interference canceller a should
only be adapted when noise and interference are dominant.

While the original proposal [33] suggests an implementation
by FIR filters in the time domain, both blocking matrix and inter-
ference canceller become significantly more efficient and robust if
spatial selectivity and the temporally selective adaptation is com-
bined with spectral selectivity: Realizing the entire structure in the
DFT domain allows bin-selective decisions and filter adaptation
and improves performance significantly, especially for nonstation-
ary noise and interferers [34, 35]. For a linear array of N = 8 sen-
sors with spacing 4cm, more than 20dB of interference suppres-
sion with negligible distortion of the desired signal can be obtained
in environments with moderate reverberation (T60 = 0.3sec).

It should be mentioned that for applications where only few
microphones can be used and the aperture must be very small, so-
called differential arrays [36] are a natural choice. Their properties
can be derived as special cases of the general beamforming con-
cepts.

Major application areas where microphone arrays recently
gained popularity include hands-free car telephony, video-
conferencing equipment for both desktops and studios, and front-
ends for hands-free automatic speech recognition. For future ap-
plications of wave field synthesis, it might be of interest that, sim-
ilarly as for multichannel echo cancellation, the interference can-
cellation concept of adaptive beamformers can be carried over to
the wave domain [37].

3.2.2. Blind source separation and blind deconvolution

When the desired source position is not available and the signal ex-
traction should not rely on a well-defined array geometry as with
beamforming, blind signal processing algorithms are especially at-
tractive. Unlike the original blind source separation (BSS) con-
cepts, which separated scalar signal mixtures [38], in our scenario,
BSS algorithms have to separate convolutive mixtures given by
Hxs ∗ s, so that the output signals are usually still linearly filtered
versions of the original signals. On the other hand, dereverberation
by blind deconvolution aims at extracting the original desired sig-
nals by additionally assuming a source model for the desired sig-

nals. BSS can be understood as blind beamforming [39], and blind
deconvolution algorithms would then correspond to blind beam-
forming with additional equalization of the acoustic channel from
the source to the microphones.

Separating convolutive mixtures of several desired sources,
means that BSS aims at Gzx ∗ Hxs ∗ s = z ≈ s. Here, the
≈ sign does allow for an additional filtering of each vector ele-
ment but not for mixing of the vector elements. The problem is
illustrated in Fig.6 for M = N = 2. From that it can be seen, that
BSS realizes a GSC-like interference cancellation for each output
zi [40], however, due to the blindness, Gzx cannot be determined
by the same criterion. Lacking reference information, BSS es-
sentially attempts to minimize statistical dependency (’minimum
mutual information’) between the output signals zi, but it should
be emphasized that the separation performance of the resulting fil-
ters in Gzx is nevertheless determined by the spatial selectivity of
Gzx. Note that the optimization criteria of BSS do not address

PSfrag replacements

n

s1

s2

S1

S2

Hxs

Gzx

v

z1

z2

Figure 6: Signal model for BSS with M = N = 2.

the dereverberation problem Eq.16, although the spatial selectiv-
ity of the resulting Gzx may contribute to dereverberation (just as
beamforming does).

For the given convolutive mixtures of speech and audio sig-
nals, three stochastic signal properties can be exploited to deter-
mine optimum demixing filters Gzx [41, 42, 43]:

Nonwhiteness of speech and audio signals can be exploited by
simultaneous block-diagonalization of correlation matrices formed
by zi(k), zj(k − d), for all relative delays d.

Nonstationarity can be exploited by simultaneous diagonal-
ization of several short-time estimates of the correlation matrices,
assuming that the optimum filters vary less than the short-time sig-
nal statistics.

Nongaussianity can exploited by higher order statistics (HOS)
as used for independent component analysis (see, e.g., [44]). Then,
instead of minimizing crosscorrelation matrices between different
channels, joint probability density functions linking the samples of
different channels zi(k), zj(k − d) must be factorized across dif-
ferent channels while leaving the joint pdfs of the samples within
a channel unchanged.

For most known algorithms, only one or two of these proper-
ties are exploited. Successful systems have been presented that are
based on second order statistics (SOS) only, and use nonwhiteness
and nonstationarity only [45, 46, 43]. Recently, TRINICON has
been presented as a generic algorithm, which simultaneously ex-
ploits all three properties and minimizes mutual information [41,
42, 47]. Here, spherical invariant random processes (SIRPs) [48]
can be incorporated into the score function to provide an efficient
model for multivariate pdfs of speech signals.
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As in our scenario convolutive mixtures have to be separated,
an implementation in the DFT domain is especially attractive, be-
cause it converts convolutive mixtures in the time domain into
scalar mixtures for each frequency bin. However, if separation
in frequency bins is carried out independently, this leads to the
so-called internal permutation problem: the separated DFT bins
for sources Si and Sj cannot be aligned to guarantee that all bins
with components of a source Si appear at the same output of the
BSS system. Moreover, most frequency-domain algorithms are
implicitly based on the DFT-inherent circular convolution of the
input data instead of the required linear convolution. Heuristic re-
pair mechanisms are common and sometimes reasonably efficient
[45, 49]. On the other hand, within the framework of a generic
SOS or HOS algorithm, time-domain criteria can also be trans-
formed rigorously into the DFT domain and, thereby, both prob-
lems are solved perfectly [41].

In Fig.7 the convergence of the signal-to-interference power
ratio for various off-line BSS algorithms for M = N = 2 and
demixing filters of length 512 is compared (for details see [42]).
The speech signal mixtures were recorded in a real room with
T60 = 0.15sec at a sampling frequency of 16kHz. Obviously,
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Figure 7: Convergence curves for off-line BSS (from [42]).

the HOS-SIRP algorithm [47], which accounts for all three signal
properties, clearly outperforms the other algorithms. The generic
SOS exhibits roughly the same convergence speed as the well-
known frequency domain algorithm [45], which is based on heuris-
tic repair mechanisms for the internal permutation and the circular
convolution problem and turns out to be an approximation of the
generic SOS algorithm. The relation of the time-domain approx-
imation to the generic SOS algorithm corresponds to the relation
of the NLMS to the RLS adaptation algorithm, which explains the
somewhat slower convergence. However, this approximation per-
mitted the first known real-time implementation of a time-domain
algorithm which perfectly avoids internal permutation and circu-
lar convolution [50], whereas previously reported real-time imple-
mentations of BSS systems all operate in the DFT domain (e.g.,
[45, 51]).

Research in BSS strives and, recently, a BSS system for up
to P = 6 channels has been demonstrated in real-life situations
[52]. Moreover, noise-robust versions have also been published
already [53]. One of the major challenges will be the handling of

M > N , i.e., if more sources than available microphones have to
be separated.

The generic TRINICON concept provides also a promising
means to tackle dereverberation [42]. Fig.8 illustrates that the
problem actually only asks for (multichannel) partial blind decon-
volution (MCPBD) where the filtering by the human vocal tract
has to be preserved, as otherwise, the output would be the signal
as produced by the glottis. In Fig.9 an example for the derever-
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Figure 8: Dereverberation and the MCPBD principle.

beration capability of the TRINICON-based SOS-MCBPD algo-
rithm relative to SOS-BSS and DSB is shown. Although this result
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Figure 9: Dereverberation by 2 × 2 SOS - MCBPD, L = 1024,
T60 ≈ 200ms, fS = 16kHz

shows the potential of this kind of algorithms, a robust solution
for real-time dereverberation as, e.g., desired for distant-talking
speech recognition applications presents still a major challenge.

3.2.3. Localization

Traditional methods for source localization of sound sources in
reverberant rooms follow either one or a combination of the fol-
lowing concepts: a, Steered response beamforming, b, TDOA es-
timation by crosscorrelation measurement, or c, spectral analysis
from array processing techniques [54]. Steered response beam-
forming essentially scans the acoustic space for peaks of signal
power to locate sources. This involves relatively high computa-
tional load if localization should be precise. Moreover, it may
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easily misinterpret focal points of reflections and noise as desired
sources. Crosscorrelation-based methods detect peaks in the gen-
eralized cross-correlation (GCC) of microphone pairs and com-
pute from the corresponding time differences of arrival (TDOA)
the source locations [55]. As it is computationally relatively inex-
pensive, it is very popular and performs well for low noise and low-
reverberation environments as long as only a single source must be
detected. However, room reverberation and noise can only be ac-
counted for by tuning window lengths and weighting mechanisms.
The main idea of statistical array processing is to decompose the
correlation matrix of the sensor signals into its eigenvectors and to
use the M eigenvectors corresponding to the largest eigenvalues as
indicators for the desired source locations. Based on this subspace
idea, wide classes of algorithms have been derived (e.g. MUSIC,
ROOT-MUSIC, ESPRIT) [56], which are inherently based on a
narrowband signal model and rely strongly on well-established
correlation matrices, which in turn require sufficiently stationary
environments (as they are rarely given in our scenario).

Recently, new concepts have been proposed that explicitly ad-
dress wideband sources and nonstationary acoustic environments.
Most notably, the adaptive eigenvalue decomposition [57] uses a
microphone pair to approximately identify the acoustic paths to
a source. From the resulting impulse responses only the domi-
nant peaks are considered to obtain a useful TDOA estimate. As
opposed to GCC, this method thus explicitly accounts for the re-
verberance of the room. From the BSS concept of Fig.6, we see
that detecting the dominant peaks in the impulse responses of the
demixing filters in Gzx yields equivalent TDOA estimates even
for two sources [58].

Aiming at even larger number of wideband sources, the above
array processing methods have recently been applied to signals
transformed to the wave domain [59, 60], where the array pro-
cessing algorithms behave just as for narrowband signals.

Beyond estimating instantaneous source locations, tracking of
moving sources can be supported by movement models, such as
extended Kalman filters [62] or particle filters [61].

4. SUMMARY AND CONCLUSIONS

For our discussion of the various signal processing problems at
a generic acoustic human/machine interface we distinguished sig-
nal reproduction and signal acquisition and first stated the funda-
mental problems before discussing recent solutions. On the re-
production side, wave field synthesis overcomes the sweet-spot
problem of traditional reproduction systems and offers some po-
tential to solve other fundamental reproduction problems: Both
listening room equalization, and noise and interference compensa-
tion are under investigation, but wide-band wide-range active noise
compensation appears to be out of reach. For signal acquisition,
acoustic echo cancellation as a non-blind MIMO system identifi-
cation problem, appears close to being solved, although for multi-
channel reproduction system still fundamental problems await ele-
gant solutions. Over the last few years, adaptive beamforming has
reached a certain maturity in achieving the desired signal separa-
tion and interference cancellation. Without relying on source lo-
cation information and due to a more powerful optimization crite-
rion, blind source separation techniques offer significant potential
for the same tasks as traditional beamforming. Dereverberation,
involving blind deconvolution, remains a major challenge for the
coming years especially with regard to its long-desired application
to distant-talking speech recognition. Finally, new promising lo-

calization techniques for nonstationary wideband sources appear
as by-products of blind signal separation and wave-domain signal
representation, and illustrate the close relations between the differ-
ent problems and solutions.

In summary, we may safely conclude that despite of significant
progress over the last few years, many fascinating challenges for
digital signal processing on both theoretical and experimental level
remain on the way to an ideal generic acoustic human/machine
interface.
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