
Proc. of the 7th Int. Conference on Digital Audio Effects (DAFx’04), Naples, Italy, October 5-8, 2004

AUDIO PROCESSING USING HASKELL

Henning Thielemann

Center of Industrial Mathematics
University of Bremen, Bremen, Germany

t

ABSTRACT

The software for most today’s applications including signal pro-
cessing applications is written in imperative languages. Impera-
tive programs are fast because they are designed close to the ar-
chitecture of the widespread computers, but they don’t match the
structure of signal processing very well. In contrast to that, func-
tional programming and especially lazy evaluation perfectly mod-
els many common operations on signals.

Haskell is a statically typed, lazy functional programming
language which allow for a very elegant and concise programming
style. We want to sketch how to process signals, how to improve
safety by the use of physical units, and how to compose music
using this language.

1. INTRODUCTION

Imperative programming languages are the usual choice for to-
day’s software. The currently popular CPUs conform to the im-
perative programming paradigm and allow a fast execution of im-
perative programs.

Nevertheless fnctional programming languages likeHaskell
[1, 2] became valuable alternatives in the recent past. The term
Functional Programming[3, 4] denotes a kind of program flow
that is different from theimperativeone. The program flow is inde-
pendent from a particular type system and from whether programs
can be compiled or not. In factHaskell can be both interpreted
[5] and compiled [6].

Today functional conceptions are integrated into almost ev-
ery imperative programming language. They allow for structured
and safe programming. A function is a part of the program with
some declared input and output. Most imperative languages al-
low for bypassing the input/output interface by the use of global
variables and by manipulation (update) of input objects. In con-
trast to thatHaskell disallows or at least strongly discourages
that. This makes things more deterministic: If you apply a func-
tion to the same argument values it will always result in the same
value. Because of this strong determinationHaskell is suited
for interactive computations (see the interactive mode of Glasgow
Haskell[6]) but you do not have to resign static type safety as in
scripting languages.

The functional approach allows features that can be imagined
hardly for imperative programming languages:

Lazy evaluationmeans that function arguments and parts of
data structures are only computed if they are needed. Thus a list
may contain infinitely many elements. This poses no problem
since a terminating algorithm will be able to access only finitely
many of them. If you represent a certain signal by a list you don’t

need to worry about its length – make it infinite and it will be con-
structed only as far as needed for the final application.

The functional approach allows for working with functions
like with other kind of data. Functions can be argument and value
of other functions, so called higher-order functions. Thus, loop
structures need not to be hard-wired into the language but the user
can create loop structures as higher-order functions that take the
loop body as argument. Now you have the combinatorial power of
functions that traverse through a data structure and functions that
process atomic data.

This allows for a very compact notation which reduces the
need for specialised library functions or library functions that do
very different things depending on type and number of the passed
arguments. By the way, the latter would conflict withHaskell’s
static typingand thepartial applicationof functions.

This article shows how the features of functional programming
and especially that ofHaskell permit elegant programming of
audio processing algorithms.

The second Section describes some of the basics ofHaskell,
e.g. syntax, type variables, data structures. The third Section de-
scribes some routines for plain signal processing. The fourth Sec-
tion sketches the design of computations with physical quantities
which improves the safety on using signal processing routines.
The fifth Section presentsHaskore, a system for programming
music, where music can be rendered into an audio or MIDI stream
eventually.

2. Haskell BASICS

To become familiar withHaskell let’s get some impressions of
its syntax:

> zero :: Int
> zero = 0

The first line is thesignatureof the constantzero. It declares
the typeInt for that constant, whereInt denotes machine size
integers. The second line defines the value of the constant.

> doubleInt :: Int -> Int
> doubleInt x = x+x

ThetypeInt -> Int states thatdoubleInt is a function that
maps an integer to an integer. This can be more generally formu-
lated for any numeric type:

> double :: Num a => a -> a
> double x = x+x

DAFX-1

 thielema@math.uni-bremen.de

Proc. of the 7 th Int. Conference on Digital Audio Effects (DAFx'04), Naples, Italy, October 5-8, 2004

— DAFx'04 Proceedings —

04DAFx

201 201

http://research.henning-thielemann.de/
mailto:thielema@math.uni-bremen.de

Proc. of the 7th Int. Conference on Digital Audio Effects (DAFx’04), Naples, Italy, October 5-8, 2004

The identifierNum is a type classanda is a type variable. The
expressionNum a is the context of the type declaration and is
separated from it by=>. The signature tells us thatdouble can be
used for all typesa that support certain numerical operations (to be
more precise: operations of algebraic rings). If you omit the type
context (i.e.double :: a -> a) the compiler would refuse
to compile because in this example it can’t assert that the type
a supports the+ operator. This is a bit more structured than the
overloading of operator symbols in C++.

How can one define functions with more than one argument?
Strictly speaking it is not possible, but it can be simulated easily.

> add :: Num a => a -> a -> a
> add x y = x+y

The signature may look strange but it is pure logic: The arrow->
is right associative. That is, the signature ofadd is equivalent to
a -> (a -> a). That in turn means: Ifadd is applied to only
one value the result is a function of one argument. E.g. the result of
(add 1) is the increment function. Consequently,((add 1)
2) is a constant with value3. Since function application is left-
associative the above example can be abbreviated toadd 1 2.
A function application that doesn’t result in a constant is called
partial application.

Partial applications are no magic. Essentially they defer com-
putation until all function arguments are known. They are one of
the reasons ofHaskell’s concise programming style. Usually
you will note that in subsequent applications of a function some
arguments receive the same value all the time and others receive
always different values. You should sort the arguments in the func-
tion definition according to increasing expected variability.

Data structures also follow the philosophy of deferred compu-
tation. Here the term islazy evaluation. A list structure is defined
roughly this way:

data List a = Empty | Prepend a (List a)

This is a recursive definition of a singly linked list meaning: A
List over typea is eitherEmpty or a list of typea with a
single element of typea prepended. The identifiersEmpty and
Prepend are calledconstructors. The list of the numbers1, 2, 3
would be written as

Prepend 1 (Prepend 2 (Prepend 3 Empty)) .

The designers ofHaskell decided to use[] instead ofEmpty
and the infix constructor: instead of the prefixPrepend. Thus
a standardHaskell list can be written as1:(2:(3:[])) or
even shorter1:2:3:[], since: is right-associative. The com-
mon notation[1,2,3] is available, too. Finally, the syntax of
the list type is[a] instead ofList a.

With lazy evaluationwe can process even infinite data struc-
tures. Let’s have a look at some infinite list likerepeat 0 which
is a list consisting of infinitely many zeros. When theHaskell
interpreter is asked to print the list it will actually start printing –
but it will never stop. Here is another example that may convince
you thatlazy evaluationworks:

> infiniteLoop :: Integer
> infiniteLoop = 1 + infiniteLoop
>
> bypassInfinity :: [Integer]
> bypassInfinity = tail [infiniteLoop, 1, 2]

Calling infiniteLoop leads to an infinite loop. The function
tail removes the first element from a list. Since it ignores the
value of the first element it isn’t even computed and thus
bypassInfinity results in[1,2] rather than an infinite loop.

A language usingstrict evaluationwould compute the list
[infiniteLoop, 1, 2] including its elements first and then
it would applytail to the result.Lazy evaluationworks differ-
ent: When you callbypassInfinity the run-time system starts
thinking about how to obtain the first element of the resulting list.
It will encounter that due totail the first element of the original
list is not required.

3. SIGNAL PROCESSING

There is already a library [7] containing many routines related to
signal processing. For now let’s start with some simple examples.
How to superpose two signals represented by lists?

> superpose :: Num a => [a] -> [a] -> [a]
> superpose = zipWith (+)

When implementingsuperpose we omitted the arguments.
This is a short notation that means roughly that a function is ex-
pressed in terms of another function. Here we use the function
zipWith partially applied to the operation+. The function
zipWith applies an operation to the corresponding elements of
two lists. The expression(+) denotes the binary addition oper-
ator. The functional definition can be interpreted as: ”Every oc-
curence ofsuperpose x y is expanded tozipWith (+) x
y.”

The function zipWith is a function from the standard
Haskell library ”Prelude” as most other functions presented here.
It can be used analogously for the amplification of a signal with an
arbitrary envelope:zipWith (*).

The static amplification is also no problem:

> amplify :: Num a => a -> [a] -> [a]
> amplify v = map (v*)

The functionmap applies an operation to each element of the list.
The notationv* denotes the infix operator* applied to only one
argument, i.e. while* is a function with two arguments, inv* the
first argument is fixed and thus it denotes a function with only one
argument.

The functioniterate from the standard library creates a list
from interim results of an iteration:

> exponential :: Num a => a -> [a]
> exponential decay = iterate (decay*) 1

The functionfoldl accumulates values from a list using an
arbitrary accumulation function. Thus the standard library defines
sum asfoldl (+) 0 andmaximum similarly. We can use it to
determine several volume measures of a finite signal:

> amplitude :: (Num a, Ord a) => [a] -> a
> amplitude x = foldl max 0 (map abs x)

> euclideannorm :: Floating a => [a] -> a
> euclideannorm x = sqrt (sum (map (ˆ2) x))

The functionfoldl1 is similar but needs no initial value for
the accumulator and requires a non-empty list. The accumulator

DAFX-2

Proc. of the 7 th Int. Conference on Digital Audio Effects (DAFx'04), Naples, Italy, October 5-8, 2004

— DAFx'04 Proceedings —202 202

Proc. of the 7th Int. Conference on Digital Audio Effects (DAFx’04), Naples, Italy, October 5-8, 2004

doesn’t need to be a scalar value, any other type is also fine. That
allows for a compact definition of the superposition of an arbitrary
number of signals:

> superposeMulti :: Num a => [[a]] -> [a]
> superposeMulti = foldl1 superpose

We definedsuperposeMulti according to itsmeaning, i.e. the
first signal is superposed with the second one, then with the third
one and so on. But the actualexecutionis very different: If you
compute the result you will start asking for the first sample of the
signal, which in turn requiresHaskell to evaluate the first sam-
ples of the input signals. Accordingly, subsequent samples of the
output are computed.

Now we know enough aboutHaskell to create a first simple
instrument sound:

> {- an oscillator
> with ’freq’ waves per sample -}
> oscillator :: Floating a => a -> [a]
> oscillator freq =
> map sin (iterate (2*pi*freq +) 0)

> {- a bell sound is a sine oscillator
> enveloped by an exponential -}
> bell :: Floating a => a -> a -> [a]
> bell decay freq =
> zipWith (*) (exponential decay)
> (oscillator freq)

We have realised the power of general list functions such as
iterate, map, zipWith, foldl. Note that we never cared
about indices! These functions operate on lists in quite a linear
manner. What about signal processing including feedback?

Haskell’s answer to feedback isrecursion:

> echo :: Num a => Int -> a -> [a] -> [a]
> echo time gain x =
> let y = superpose x (delay time
> (amplify gain y))
> in y
>
> delay :: Num a => Int -> [a] -> [a]
> delay time = (replicate time 0 ++)

For more clarity thelet notation is used. It introduces a local
identifier for some value and in this case it is used for recursively
definingy.

The definition should be read as: An infinite echo is a super-
position of the original signal and an attenuated and delayed ver-
sion of itself. This is a kind of recursion which describes the data
structure recursively. It relies on the lazy evaluation of data and is
very common inHaskell though it is quite uncommon in other
languages.

Instead of simply attenuating the signal on feedback any other
processing can be applied, say a lowpass or highpass filter:

> echoProc :: Num a =>
> Int -> ([a] -> [a]) -> [a] -> [a]
> echoProc time feedback x =
> let y = superpose x (delay time
> (feedback y))
> in y

By defining lists recursively we can write the solution of dif-
ference equations with the common notation of differential equa-
tions. (cf. [8]) The standard functionscanl accumulates values
from a list using an arbitrary accumulation operation, but in con-
trast tofoldl it returns a list of the intermediate results. Thus the
definition

> integrate :: Num a => a -> [a] -> [a]
> integrate = scanl (+)

is straight-forward. The second argument ofscanl, which is the
initial value of the accumulator, turns into the first argument of
integrate and represents the integration constant. Using it
we can numerically solve the inhomogeneous oscillation equation
y′′+c1y

′+c0y = u with the driving forceu and the initial values
y(0) andy′(0).

> osciODE :: Num a =>
> (a,a) -> (a,a) -> [a] -> [a]
> osciODE (c0,y0) (c1,y’0) u =
> let infixl 6 .+, .-
> infixr 7 *>
> (.+) = zipWith (+)
> (.-) = zipWith (-)
> (*>) = amplify
>
> y = integrate y0 y’
> y’ = integrate y’0 y’’
> y’’ = u .- (c0 *> y .+ c1 *> y’)
> in y

Note that the apostrophe has no special meaning and is part of the
identifiers. The infix operators.+, .-, *> are introduced just for
visual convenience.

At the first glance this example looks a bit like magic. It’s
not obvious how the program actually solves the equation but you
can verify that it computes something (i.e. there is an order of
computation such that each item of the listsy, y’, y’’ depends
only on values that are already computed) and that the computed
signal satisfies the difference equation. This example shows how
lazy evaluation allows you to concentrate onproblemsrather than
solutions.

Recursive filters (notion taken from [9] instead of IIR) could
be implemented either as solution of difference equations or, in
the tradition of imperative languages, using states. That is, the
sample values of the signal are not processed independently but
while scanning the signal an internal state is stored and updated.
The functional programming paradigm forbids update operations.
They must be implemented by inputting the current state and re-
turning the updated state. The compiler is responsible to turn this
back into update operations if possible.

We like to demonstrate this technique for a first order lowpass
filter:

> lowpass1Aupdate :: Num a =>
> a -> a -> a -> (a,a)
> lowpass1Aupdate k u0 y1 =
> let y0 = u0+k*(y1-u0) in (y0,y0)
>
> lowpass1A :: Num a => a -> a -> [a] -> [a]
> lowpass1A s k (u:us) =
> let (x,news) = lowpass1Aupdate k u s
> in x : lowpass1A news k us

DAFX-3

Proc. of the 7 th Int. Conference on Digital Audio Effects (DAFx'04), Naples, Italy, October 5-8, 2004

— DAFx'04 Proceedings —203 203

Proc. of the 7th Int. Conference on Digital Audio Effects (DAFx’04), Naples, Italy, October 5-8, 2004

Herelowpass1Aupdate takes the filter feedbackk, the current
input signal valueu0. The state is the previous output valuey1.
The function returns the new output valuey0 and the updated state
which isy0, too. The functionlowpass1A applies the filtering
process to a signal. The call tolowpass1Aupdate can be easily
replaced by a call to every state updating function of this type.

Note that constructors like: are sort of two-way: You can
not only use the colon to prepend an element to a list but by using
pattern matchingin an argument like(u:us) you can also split a
list into the head elementu and the rest of the listus.

Because states are a common programming technique there
is a data typeState. An object of typeState s a is essen-
tially a function with signatures -> (a, s), i.e. a function
that receives the current state and outputs some data and the up-
dated state. Since functions can be easily constructed on the fly (in
fact that is the way multi-argument functions are implemented) it
is also possible to feed the update function with additional data.

> lowpass1Bupdate :: Num a =>
> a -> a -> State a a
> lowpass1Bupdate k u0 =
> let update y1 =
> let y0 = u0+k*(y1-u0) in (y0,y0)
> in State update
>
> lowpass1B :: Num a => a -> a -> [a] -> [a]
> lowpass1B s k u = evalState
> (mapM (lowpass1Bupdate k) u) s

The expressionlowpass1Bupdate k is of typea -> State
a a, i.e. a function that maps an input value to a state update func-
tion. The functionmapM applies this map to each input value and
glues together the resulting update functions. Eventually evalState
executes the actions beginning with states.

4. PHYSICAL UNITS

The key tool to describe natural sound phenomena is physics. So
it is an obvious question if one can use physical units rather than
scalar values inHaskell. Physical units provide more details
and allow for more consistency checks. Certainly one can argue
that units are for physics what types are for informatics.

Imagine you want to simulate an echo where the sound has to
cover a distances for returning by the acoustic velocityv sampled
at a rate ofr. The numbern of samples for the delay can be obtain
from

s = 100 m

v = 330 m/s

r = 44100 samples/s

n =
s · r
v

≈ 13363 samples

and the correct unit ofn verifies that our computation was not
totally wrong.

Because ofHaskell’s polymorphic type system numbers
equipped with physical units can be nicely integrated into the col-
lection of numeric types [10]. Thetype classesof Haskell allow
the usage of infix operators like+ and* for custom types. Though
it should be mentioned that infix operators are pure syntactic sugar

making computer formulas similar to mathematical notation. The
price to be paid are lots of precedence and associativity rules, more
complicated syntax checking and more difficulties in understand-
ing syntax error messages.

As in most other languages it is not possible to generate cus-
tom compiler errors. E.g. a comparison like’a’ < 1 is rejected
by the compiler due to the type mismatch. But the compiler can’t
be advised to reject expressions like1 m < 2 s. By unfolding the
function calls the compiler may even realize that the expression
will always result in an error but it will translate it into a perma-
nent runtime error rather than a compilation error.

So, what’s a physical quantity? A physical quantity is essen-
tially a number equipped with a vector of the exponents of some
base units. E.g. a force of14 N can be expressed by14 and the
vector (1,−2, 1, 0), where the vector contains the exponents of
meter, second, kilogramme and coulomb respectively.

To stay independent from a specific unit system we define

> type Unit i = FiniteMap i Int

where the standard data typeFiniteMap represents a dictionary
with keys of typei and values of typeInt. FiniteMap per-
fectly reflects the sparse structure of the exponent vector though
it might seem to be somewhat overkill. For specific unit sys-
tems like the one of SI [11] one would choose the typei to be
Int or some enumeration. Now one can define some operations
on the exponent vectors like add, subtract.

The next step is to combine a numerical value with a unit:

> data PhysValue i a = PV a (Unit i)

It means that an object of type(PhysValue i a) is composed
of a number of typea and a unit exponent vector of typeUnit i.
As an example let’s look at the definition of the equality relation
== for this type:

> instance (Eq i, Eq a) =>
> Eq (PhysValue i a) where
> (PV x xu) == (PV y yu) = x==y && xu==yu

This reads as: If both the typei and the typea are comparable
then physical quantities constructed from them are comparable, as
well. Two physical quantities are equal if and only if the numerical
value and the unit matches.

The next step is to provide a type for a specific unit system.
Here we gear towards the SI system of units. We define

> data SIDim =
> Length | Time | Mass | Charge |
> Angle | Temperature | Information
> deriving (Eq, Ord, Enum, Show)

and thenUnit SIDim is the type that represents the composed
units in the SI system. Further on we require a set of constants
for prefixes likekilo, milli, a set of basic units likemeter,
second, some physical constants likemach (sonic velocity).

This would be enough for plain computation but it is more
convenient if physical values could be also converted to strings.
Decomposing a unit into common SI units requires some heuristics
but it can be done in a satisfactory manner. With such a system
interactive computations with physical quantities look like

DAFX-4

Proc. of the 7 th Int. Conference on Digital Audio Effects (DAFx'04), Naples, Italy, October 5-8, 2004

— DAFx'04 Proceedings —204 204

Proc. of the 7th Int. Conference on Digital Audio Effects (DAFx’04), Naples, Italy, October 5-8, 2004

GHCi> 2*milli*meter
2.0*mm
GHCi> 1000*liter
1.0*mˆ3
GHCi> 10*watt/(220*volt)
45.45454545454545*mA
GHCi> 9*newton*meter/liter
9.0*kPa
GHCi> year/second
3.1556926080000002e7
GHCi> 100*meter * 44100/second / mach
13283.132530120482

Note that in contrast to other languages there is no implicit
conversion of different types of numbers at runtime. The literal
2 is a polymorphic constant of a type of classNum. In Haskell
syntax this would be written as

2 :: Num a => a .

This is similar formilli:

milli :: Fractional a => a
milli = 1e-3 .

That is since in the expression2*milli*meter the generic con-
stants2 andmilli are mixed with the special SI quantitymeter
the types of the constants2 andmilli are also specialised to SI
quantities at compile time. This mechanism is calledtype infer-
ence.

Finally, here is a front-end to the first order lowpass filter using
physical units:

> lowpass1Unit ::
> (Ord i, Show i, Floating a) =>
> PhysValue i a -> PhysValue i a ->
> [a] -> [a]
> lowpass1Unit samplerate cutoff =
> lowpass1B 0 (exp (-2*pi*
> toScalar (cutoff/samplerate)))

The unit check is built intotoScalar – In this simple imple-
mentation the program is aborted iftoScalar is applied to a
non-scalar value. Note that in general such front-ends work with
every unit system independent from particular units. I.e. there
must always be parameters that map physical quantities to the
scalar parameters of the numeric computation. These coefficients
must have the desired units. E.g. the amplitude of an oscillat-
ing voltage has unitvolt, the sample rate of a time series has
unit 1/second, the sample rate of a function of the length has
unit 1/meter, the sample rate of a frequency spectrum has unit
second and so on.

5. MUSIC COMPOSITION

In the past special purpose languages for composing music were
developed [12]. Haskell’s syntax is so concise that there is
hardly a need for a special markup language. The most famous
approach for creating music withHaskell is Haskore [13, 14,
15]. Haskore turnsHaskell into a fully programmable stati-
cally safe music description language. No extra interpreter is re-
quired.

Haskore is organised as follows:

1. The front-end is a data structure for abstractly describing
music.

2. A performer function turns this data structure into a se-
quence of musical events.

3. Several back-ends exist that convert such a sequence into a
MIDI stream [16], a CSound orchestra file [17] or into an
audio stream.

This Section provides some guidance on how to set up aMusic
data structure. Creating a piece of music at the level of the core
data structure looks like

> cMajMelodic0, cMajHarmonic0 :: Music
>
> cMajMelodic0 =
> Note (C,0) qn [] :+:
> Note (E,0) qn [] :+:
> Note (G,0) qn [] :+:
> Note (C,1) qn []
>
> cMajHarmonic0 =
> Note (C,0) qn [] :=:
> Note (E,0) qn [] :=:
> Note (G,0) qn [] :=:
> Note (C,1) qn []

whereqn denotes the duration of a quarter note and[] is an empty
list that could be filled with additional note attributes.

Some assisting functions may simplify writing. The functions
c, d and so on create a Note for given octave, duration, attributes.

> stdNote :: t -> (t -> [a] -> m) -> m
> stdNote dur n = n dur []
>
> cMajList :: [Music]
> cMajList =
> map (stdNote qn) [c 0, e 0, g 0, c 1]
>
> cMajMelodic1, cMajHarmonic1 :: Music
> cMajMelodic1 = line cMajList
> cMajHarmonic1 = chord cMajList

Now you can use all programming features for the creation of
music. The simplest of them is probably an infinite melody loop:

> cMajLoop :: Music
> cMajLoop = repeatM cMajMelodic1

How about an infinite loop of notes that are randomly chosen
from a given set of notes?

> randomChoiceLoop :: RandomGen g =>
> [Pitch] -> Dur -> g -> Music
> randomChoiceLoop ps d g =
> let indexToNote i = Note (ps!!i) d []
> in line (map indexToNote
> (randomRs (0,(length ps)-1) g))
>
> cMajRandomLoop :: RandomGen g =>
> g -> Music
> cMajRandomLoop = randomChoiceLoop
> [(C,0), (E,0), (G,0), (C,1)] qn

DAFX-5

Proc. of the 7 th Int. Conference on Digital Audio Effects (DAFx'04), Naples, Italy, October 5-8, 2004

— DAFx'04 Proceedings —205 205

Proc. of the 7th Int. Conference on Digital Audio Effects (DAFx’04), Naples, Italy, October 5-8, 2004

The example uses theps!!i operation which selects theith ele-
ment of the listps and the functionrandomRs which generates
an infinite list of random numbers of the specified range and the
random number generatorg.

Here is another example of programming music: We like to
loop a pattern where the number of notes played increases over the
time.

> partialBar ::
> [Pitch] -> Dur -> Int -> Music
> partialBar ps d n =
> let pitchToNote p = Note p d []
> in line
> (map pitchToNote (take n ps) ++
> [Rest ((length ps - n)%1*d)])
>
> increasingLoop ::
> Int -> [Pitch] -> Dur -> Music
> increasingLoop rep ps d =
> let n = length ps
> in line (concatMap (replicate rep)
> (map (partialBar ps d) [1..n]))
>
> cMajIncLoop :: Music
> cMajIncLoop = increasingLoop 4
> [(C,0), (E,0), (G,0), (C,1)] qn

The last example is a bit less abstract: A function that com-
putes a chord on a guitar for a chord given as list of tones. To each
string of the guitar we assign the tone of the chord that is closest
to the base tone of this string.

> choosePitchForString ::
> [PitchClass] -> Pitch -> Pitch
> choosePitchForString chord str@(pc,oct) =
> let diff x = mod
> (pitchClass x - pitchClass pc) 12
> in trans (minimum (map diff chord)) str
>
> guitarChord :: [PitchClass] -> [Pitch]
> guitarChord chord =
> map (choosePitchForString chord)
> [(E,2), (B,1), (G,1),
> (D,1), (A,0), (E,0)]

The functionpitchClass converts a pitch value likeC into an
integer and the functiontrans transposes an absolute pitch value.

6. OUTLOOK

Haskell’s strengths are the concise style of programming com-
bined with static typechecking.Haskell’s weakness today is
the low performance. On the one handHaskell programs are
a pleasure for optimisers because the compiler can clearly realise
the flow of data. There are no hidden flows that can confuse the
optimiser. On the other hand it’s difficult to detect input/output
values that can be turned into efficient update operations. The big
flexibility makes it difficult to generate efficient code for a specific
application.

Even today there are several possibilities for tuningHaskell
programs for efficiency but the big challenge is to achieve both el-
egance and efficiency. Progresses in compiler technique combined

with programmers assistance may makeHaskell a very valuable
tool for signal processing in future.

7. REFERENCES

[1] Simon Peyton Jones (editor), “Haskell 98 language and
libraries, the revised report,”http://www.haskell.
org/definition/, 1998.

[2] Hal Daume, “Yet another haskell tutorial,”http://www.
isi.edu/∼hdaume/htut/, 2004.

[3] John Hughes, “Why functional programming matters,”
http://www.md.chalmers.se/∼rjmh/Papers/
whyfp.pdf, 1984.

[4] Paul Hudak, “Conception, evolution, and application of
functional programming languages,”ACM Comput. Surv.,
vol. 21, no. 3, pp. 359–411, 1989.

[5] “Hugs 98,”http://haskell.org/hugs/, 2004.

[6] “Ghc: The glasgow haskell compiler,” http:
//haskell.org/ghc/, 2004.

[7] Matthew Donadio, “Haskell dsp,” http://
haskelldsp.sourceforge.net/, 2003.

[8] Jerzy Karczmarczuk, “Lazy processing and optimization of
discrete sequences,”http://users.info.unicaen.
fr/∼karczma/arpap/laseq.pdf, 2004.

[9] Richard W. Hamming, Digital Filters, Signal Processing
Series. Prentice Hall, January 1989.

[10] Henning Thielemann, “Physical units in haskell,”
http://www.math.uni-bremen.de/∼thielema/
Research/PhysicalUnit/.

[11] “Si: International system of units,” http://en.
wikipedia.org/wiki/SI, March 2004.

[12] “Audio programming languages,” http://
en.wikipedia.org/wiki/Category:
Audio programming languages, March 2004.

[13] Paul Hudak, “Haskore - music composition using haskell,”
http://www.haskell.org/haskore/, 2000.

[14] P. Hudak, T. Makucevich, S. Gadde, and B. Whong,
“Haskore music notation – an algebra of music,”Journal
of Functional Programming, vol. 6, no. 3, June 1996.

[15] Paul Hudak, The Haskell school of expression – Learning
functional programming through multimedia, Cambridge
University Press, April 2000.

[16] MMA, “Midi 1.0 detailed specification: Document ver-
sion 4.1.1,” http://www.midi.org/about-midi/
specinfo.shtml, February 1996.

[17] Barry Vercoe, “Csound,”http://www.bright.net/
∼dlphilp/linux csound.html.

DAFX-6

Proc. of the 7 th Int. Conference on Digital Audio Effects (DAFx'04), Naples, Italy, October 5-8, 2004

— DAFx'04 Proceedings —206 206

http://www.haskell.org/definition/
http://www.haskell.org/definition/
http://www.isi.edu/~hdaume/htut/
http://www.isi.edu/~hdaume/htut/
http://www.md.chalmers.se/~rjmh/Papers/whyfp.pdf
http://www.md.chalmers.se/~rjmh/Papers/whyfp.pdf
http://haskell.org/hugs/
http://haskell.org/ghc/
http://haskell.org/ghc/
http://haskelldsp.sourceforge.net/
http://haskelldsp.sourceforge.net/
http://users.info.unicaen.fr/~karczma/arpap/laseq.pdf
http://users.info.unicaen.fr/~karczma/arpap/laseq.pdf
http://www.math.uni-bremen.de/~thielema/Research/PhysicalUnit/
http://www.math.uni-bremen.de/~thielema/Research/PhysicalUnit/
http://en.wikipedia.org/wiki/SI
http://en.wikipedia.org/wiki/SI
http://en.wikipedia.org/wiki/Category:Audio_programming_languages
http://en.wikipedia.org/wiki/Category:Audio_programming_languages
http://en.wikipedia.org/wiki/Category:Audio_programming_languages
http://www.haskell.org/haskore/
http://www.midi.org/about-midi/specinfo.shtml
http://www.midi.org/about-midi/specinfo.shtml
http://www.bright.net/~dlphilp/linux_csound.html
http://www.bright.net/~dlphilp/linux_csound.html

	P_201.pdf
	AUDIO PROCESSING USING HASKELL
	1 Introduction
	2 Haskell basics
	3 Signal processing
	4 Physical units
	5 Music composition
	6 Outlook
	7 References

	Thielemann

