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ABSTRACT 

Using sensors to extract gestural information for control parame-
ters of digital audio effects is common practice. There has also 
been research using machine learning techniques to classify spe-
cific gestures based on audio feature analysis. In this paper, we 
will describe our experiments in training a computer to map the 
appropriate audio-based features to look like sensor data, in order 
to potentially eliminate the need for sensors. Specifically, we will 
show our experiments using the ESitar, a digitally enhanced sen-
sor based controller modeled after the traditional North Indian 
sitar. We utilize multivariate linear regression to map continuous 
audio features to continuous gestural data.   

1. INTRODUCTION  

Using hyper instruments that utilize sensors to extract gestural 
information for control parameters of digital audio effects is 
common practice. However, there are many pitfalls in creating 
sensor-based controller systems. Purchasing microcontrollers and 
certain sensors can be expensive. The massive tangle of wires 
interconnecting one unit to the next can get failure-prone. Things 
that can go wrong include: simple analog circuitry break down, or 
sensors wearing out right before a performance forcing musicians 
to carry a soldering iron along with their tuning fork. The biggest 
problem with hyper-instruments, is that there usually is only one 
version, and the builder is the only one that can benefit from the 
data acquired. These problems have motivated our team to attempt 
to use sensor data so that sensors become obsolete. More specifi-
cally we use sensor data to train machine learning models, evalu-
ate their performances and then use the trained acoustic-based 
models to replace the sensor.   

The traditional use of machine learning in audio analysis has 
been in classification where the output of the system an ordinal 
value (for example the instrument name). In this work, we explore 
regression which refers to machine learning systems where the 
output is a continuous variable. One of the challenges in regres-
sion is obtaining data for training. To solve this problem, we use 
the sensor data to train the model that will replace the sensor. In 
our experiments, we use audio-based feature extraction with syn-
chronized continuous sensor data to train a “pseudo” sensor using 
machine learning.   

Specifically, we show our experiments using the Electronic 
Sitar (ESitar), a digitally enhanced sensor based controller mod-
eled after the traditional North Indian sitar.          

 In this paper the following will be discussed:  

• Background on related work using machine learning techniques 
for extraction of gesture information  

• Description of sensor-based gesture extraction using the ESitar 
controller  

• Audio-based feature extraction and multivariate feature extrac-
tion  

• Experiments on audio-based gesture extraction on the ESitar 
controller  

2. RELATED WORK  

There has been a variety of research using machine learning tech-
niques to classify specific gestures based on audio feature analy-
sis. The extraction of control features from the timbre space of the 
clarinet is explored in [1]. Deriving gesture data from acoustic 
analysis of a guitar performance is explored in [2, 3, 4]. An impor-
tant influence for our research is the concept of indirect acquisi-
tion of instrumental gesture described in [4]. Gesture extraction 
from drums is explored in [5, 6]. All the cited papers fall into two 
broad categories: (1) methods that rely on signal processing to 
directly map the sound to gesture parameter and typically work for 
continuous data, and (2) methods that use machine learning to 
extract categorical information. The former tend to be sensitive to 
noise and other uncertainties in the sensor data, and therefore not 
suitable for use in actual performance. The later although robust to 
noise don’t handle continuous gestural data.  In addition, the map-
ping from sound to gesture in many cases is not straight-forward 
and machine learning is necessary to obtain a useful mapping. 
Using regression, our approach deals with continuous gestural 
data while retaining the robustness achieved by machine learning.   

3. DIGITIZING SITAR GESTURES  

In this Section we will briefly describe background of traditional 
sitar technique followed by a description of a sensor based con-
troller which digitizes a sitar players gestures. This brief descrip-
tion is included to inform the presentation of the audio-based ges-
tural analysis described later. More background and details about 
these topics can be found in [7].   

3.1. Sitar and playing technique  

The sitar is Saraswati’s (the Hindu Goddess of Music) 19-
stringed, pumpkin shelled, traditional North Indian instrument. Its 
bulbous gourd (shown in Figure 1), cut flat on the top, is joined to 
a long necked hollowed concave stem that stretches three feet long 
and three inches wide. The sitar contains seven strings on the up-
per bridge, and twelve sympathetic stings below all tuned by tun-
ing pegs. The upper strings include rhythm and drone strings, 
known as chikari. Melodies, which are primarily performed on the 
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upper-most string and occasionally the second string, induce sym-
pathetic resonances in the twelve strings below. The sitar can have 
up to 22 moveable frets, tuned to the notes of a Raga (the melodic 
mode, scale, order, and rules of a particular piece of Indian classi-
cal music) [8,9,10,11].  
 
 

  
Figure 1: The traditional North Indian sitar. 

 
It is important to understand the traditional playing style of 

the sitar to comprehend how our controller captures its hand ges-
tures. Our controller design has been informed by the needs and 
constraints of the long tradition and practice of sitar playing. It 
should be noted that there are two main styles of sitar technique: 
Ustad Vilayat Khan’s system and Pandit Ravi Shankar’s system. 
[10] The ESitar is modeled based on the Vilayat Khan system.   

Monophonic melodies are performed primarily on the outer 
main string, and occasionally on the copper string. The sitar player 
uses his left index finger and middle finger, as shown in Figure 
2(a), to press the string to the fret to play the desired swara (note). 
The frets are elliptically curved so the string can be pulled down-
ward, to bend to a higher note. This is how a performer incorpo-
rates the use of shruti (microtones) which is an essential character-
istic of traditional classical Indian music.  

On the right index finger, a sitar player wears a ring like plec-
trum, known as a mizrab. The right hand thumb, remains securely 
on the edge of the dand (neck) as shown on Figure 3(a), as the 
entire right hand gets pulled up and down over the main seven 
strings, letting the mizrab strum the desired melody. An upward 
stroke is known as Dha and a downward stroke is known as Ra. 
[9,10]. The two main gestures we capture using sensors and sub-
sequently try to model using audio-based analysis are: 1) the 
pitch/fret position and 2) the mizrab stroke direction. The corre-
sponding sensors are described in the following Subsection.   

3.2. The ESitar Controller  

The ESitar was built with the goal of capturing a variety of ges-
tural input data. For our experiments, we are interested in gestures 
that deduce monophonic pitch detection and mizrab pluck direc-
tion. A variety of different families of sensor technology and sig-
nal processing methods are used, combined with Atmel AVR 
ATMega16 microcontroller[12], which serves as the brain of the 
ESitar.  

3.2.1. Fret Detection  

The currently played fret is deduced using an exponentially dis-
tributed set of resistors which form a network interconnecting in 
series each of the frets on the ESitar (pictured in Figure 2(b)).  
When the left hand fingers depress the string to touch a fret (as 
shown in Figure 2(a)), current flows through the string and the 
segment of the resistor network between the bottom and the 
played fret. The voltage drop across the in-circuit segment of the 

resistor network is digitized by the microcontroller. Using a 
lookup table it maps each unique value to a corresponding fret 
number and sends it out as a MIDI message. 
  

(a)   (b) 

Figure 2: (a) Traditional fingers playing fret technique; (b) Net-
work of resistors on the frets of the ESitar. 
 
As mentioned before, the performer may pull the string down-
ward, bending a pitch to a higher note (for example play a Cb 
from the A fret). To capture this additional information that is 
independent of the played fret, we fitted the instrument with a 
piezo pick-up to be fed into a pitch detector.  We chose to imple-
ment the pitch detector as a pure data [13] external object using an 
auto-correlation based method [14]. The pitch detection is 
bounded below by the pitch of the currently played fret and al-
lowed a range of eight semi-tones above to help eliminate octave 
errors.   

3.2.2. Mizrab Pluck Direction  

We are able to deduce the direction of a mizrab stroke using a 
force sensing resistor (FSR), which is placed directly under the 
right hand thumb, as shown in Figure 3. As mentioned before, the 
thumb never moves from this position while playing, however, the 
applied force varies based on mizrab stroke direction. A Dha 
stroke (upward stroke) produces more pressure on the thumb than 
a Ra stroke (downward stroke). We send a continuous stream of 
data from the FSR via MIDI, because this data is rhythmically in 
time and can be used compositionally for more then just deducing 
pluck direction.  
  

(a)   (b) 

Figure 3:  (a) Traditional mizrab technique (notice thumb posi-
tion); (b) FSR sensor used to measure thumb pressure.   

4. AUDIO-BASED ANALYSIS   

In this Section we describe how the audio signal is analyzed. For 
each short time segment of audio data numerical features are cal-
culated. At the same time, sensor data is also captured. These two 

 DAFX-2 

Proc. of the 7 th Int. Conference on Digital Audio Effects (DAFx'04), Naples, Italy, October 5-8, 2004

— DAFx'04 Proceedings —18 18



Proc. of the 7th Int. Conference on Digital Audio Effects (DAFX-04), Naples, Italy, October 5-8, 2004 
 

steams of data potentially have different sampling rates. In addi-
tion, in some cases, the gestural data is not regularly sampled. We 
have developed tools to align the two streams of data for these 
cases. Once the features are aligned with the sensor data, we train 
a “pseudo” sensor using regression .and explore its performance.    

4.1. Audio-Based feature extraction  

The feature set used for the experiments described in this paper is 
based on standard features used in isolated tone musical instru-
ment classification, music and audio recognition. It consists of 4 
features computed based on the Short Time Fourier Transform 
(STFT) magnitude of the incoming audio signal. It consists of the 
Spectral Centroid (defined as the first moment of the magnitude 
spectrum), Rolloff and Flux as well as RMS energy. More details 
about these features can be found in [15]. The features are calcu-
lated using a short time analysis window with duration 10-40 mil-
liseconds. In addition, the means and variances of the features 
over a larger texture window (0.2-1.0 seconds) are computed re-
sulting in a feature set with 8 dimensions. The large texture win-
dow captures the dynamic nature of spectral information over time 
and it was a necessary addition to achieve any results in mapping 
features to gestures. Ideally the size of the analysis and texture 
windows should correspond as closely as possible to the nature 
time resolution of the gesture we want to map. In our experiments 
we have looked at how these parameters affect the desired output. 
In addition, the range of values we explored was determined em-
pirically by inspecting the data acquired by the sensors.  

4.2. Audio-Based Pitch Extraction  

The pitch of the melody string (without the presence of drones) is 
extracted directly from the audio signals using the method de-
scribed in [16]. This method is an engineering simplification of a 
perceptually-based pitch detector and works by slitting the signal 
into two frequency bands (above and bellow 1000Hz), applying 
envelope extraction on the high-frequency band followed by en-
hanced autocorrelation (a method for reducing the effect of har-
monic peaks in pitch estimation). Figure 4 shows a graph of a 
simple ascending diatonic scale calculated directly from audio 
analysis.   
 

 
Figure 4: Graph of Audio-Based Pitch extraction on an ascend-
ing diatonic scale without drone strings being played.  

The audio-based pitch extraction is similar to many existing sys-
tems that do not utilize machine learning therefore it will not be 
further discussed. Currently the audio-based pitch extraction 
works only if the drone strings are not audible. We are planning to 
explore a machine learning approach to pitch extraction when the 
drone strings are sounding in the future.   

The interaction between sensors and audio-based analysis can 
go both ways. For example we used the audio-based pitch extrac-
tor to debug and calibrate the fret-sensor. Then the fret sensor can 
be used as ground truth for machine learning of the pitch in the 
presence of drone strings. We believe that this bootstrapping proc-
ess can be very handy in the design and development of gestural 
music interfaces in general.    

4.3. Regression Analysis  

Regression refers to the prediction of real-valued outputs from 
real-valued inputs. Multivariate regression refers to predicting a 
single real-valued output from multiple real-valued inputs. A clas-
sic example is predicting the height of a person using their meas-
ure weight and age. There are a variety of methods proposed in the 
machine learning [17] literature for regression. For the experi-
ments described in this paper, we use linear regression where the 
output is formed as a linear combination of the inputs with an 
additional constant factor. Linear regression is fast to compute and 
therefore useful for doing repetitive experiments for exploring the 
parameter. We also employ a more powerful back propagation 
neural network [18] that can deal with non-linear combinations of 
the input data. The neural network is slower to train but provides 
better regression performance. Finally, the M5 prime decision tree 
based regression algorithm was also used [19]. The performance 
of regression is measured by a correlation coefficient which ranges 
from 0.0 to 1.0 where 1.0 indicates a perfect fit. In the case of 
gestural control, there is significant amount of noise and the sen-
sor data doesn’t necessarily reflect directly the gesture to be cap-
tured. Therefore, the correlation coefficient can mainly be used as 
a relative performance measure between different algorithms 
rather than an absolute indication of audio-based gestural captur-
ing.    

5. AUDIO-BASED GESTURE EXTRACTION  

5.1. Data Collection  

In order to conduct the experiments the following tools were used 
to record audio and sensor data. Audio files were recorded with 
DigiDesign’s ProTools Digi 002 Console using a piezo pickup 
(shown in Figure 4) placed directly on the sitar’s tabli. Midi data 
was piped through pure data [13] (http://pure-data.sour 
ceforge.net/) where it was filtered and sent to a custom built 
Midi Logger program which recorded time stamps and all midi 
signals. Feature extraction of the audio signals was performed 
using Marsyas [20] (http://marsyas.sourceforge.net).
The sampling rate of the audio files and the sensor data were not 
the same. The audio data was sampled at 44100 Hz and then 
downsampled for processing to 22050 Hz. Also the sensor data 
was not regularly sampled.  Tools were developed to align the data 
for use with Weka [21] (http://www.cs.waikato.ac.nz/ 
ml/weka/), a tool for data mining with a collection of various 
machine learning algorithms.   
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For the experiments, excerpts of a jhala portion of a raga were 
performed on the ESitar. Jhala is a portion of sitar performance 
characterized by the constant repetition of pitches, including the 
drone, creating a driving rhythm. [10] Because of the rhythmic 
nature of this type of playing we chose to explore the signals of 
the thumb sensor to get an inclination of mizrab pluck direction 
using audio-based feature analysis and regressive machine learn-
ing algorithms.    

5.2. Experiments using Regression Analysis  

Our first experiment was to analyze the effect of the analysis win-
dow size used for audio based feature extraction. Table 1 shows 
the results from this experiment. Take note that the texture size 
remained constant at 0.5 seconds and linear regression was used. 
The correlation coefficient for random inputs is 0.14.  It is appar-
ent based on the table that an analysis window of length 256 
(which corresponds to 10 milliseconds) achieves the best results. It 
can also be seen that the results are significantly better than 
chance. We used this window size for the next experiment.  
  

Analysis Window Size 
(samples at 22.5 KHz) 128 256 512 

Correlation Coefficient 0.2795 0.3226 0.2414 

Table 1:  Effect of analysis window size. 

  
The next experiment explored the effect of texture window size 
and choice of regression method. Table 2 shows the results from 
this experiment. The rows correspond to regression methods and 
the columns correspond to texture window sizes expressed in 
number of analysis windows. For example, 40 corresponds to 40 
windows of 256 samples at 22050 Hz sampling rate which is ap-
proximately 0.5 seconds. To avoid overfitting we use a percentage 
split where the first 50% of the audio and gesture data recording is 
used to train the regression algorithm which is subsequently used 
to predict the second half of recorded data.   
 

Table 2: Effect of texture window size (columns) and regression 
method (rows).    

It is evident from the table and Figure 5 that the best choice of 
texture window size is 20 which corresponds to 0.25 seconds. In 
addition, the best regression performance was obtained using the 
back propogation neural network. Another interesting observation 
is that the relation of inputs to outputs is non-linear as can be seen 

  

   
Figure 5: Graph showing the effect of texture window size and 
regression method.  

6. CONCLUSIONS AND FUTURE WORK   

In this paper, we propose the use of machine learning methods and 
more specifically regression for replacing sensors with analysis of 
the audio input data. A proof-of-concept experiment to verify this 
idea was conducted using the ESitar controller. Our preliminary 
results indicate that regression can be used to predict non-trivial 
continuous control data such as the thumb sensor of the ESitar 
without using sensors.  Previous methods either relied on complex 
signal processing design and were not robust to noise or only dealt 
with classification into discrete labels. Our approach handles 
gracefully both problems with minimal user involvement as the 
training is performed using the sensor we are trying to replace 
without requiring any human annotation. We show how the choice 
of regression method and analysis parameters affects the results 
for a particular recording. There is a lot of work to be done in 
exploring how this approach can be used and this is only the be-
ginning.    10  20  30  40  

Random  Input  0.14 0.14  0.14  0.14 

Linear Regression  0.28 0.33  0.28  0.27 

Neural Network  0.27 0.45  0.37  0.43 

M5’ Regression 
Method  0.28 0.39  0.37  0.37 

There are many directions for future work. We are exploring 
the use of additional audio-based features such as Mel-Frequency 
Cepstral Coefficients (MFCC) and Linear Prediction Coefficients 
(LPC).  We are also gathering more recording to use for analysis. 
Creating tools for further processing the gesture data to reduce the 
noise and outliers is another direction for future research. We 
would also like to try and predict other types of gestural data such 
as fret position. Another eventual goal is to use this technique to 
transcribe the sitar and other Indian music. We are also interested 
in using this method for other instruments such as the tabla and 
snare drum.   
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