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ABSTRACT

The Modified Discrete Cosine Transform (MDCT) is a broadly-
used transform for audio coding, since it allows an orthogonal
time-frequency transform without blocking effects. In this arti-
cle, we show that the MDCT can also be used as an analysis tool.
This is illustrated by extracting the frequency of a pure sine wave
with some simple combinations of MDCT coefficients. We studied
the performance of this estimation in ideal (noiseless) conditions,
as well as the influence of additive noise (white noise / quantiza-
tion noise). This forms the basis of a low-level feature extraction
directly in the compressed domain.

1. INTRODUCTION

For indexation purposes, it is necessary to retrieve low-level fea-
tures about the signal, such as some information about the fre-
quency and amplitude of the tonal components in the signal. A
number of techniques have been proposed [1], usually based on
the Short Time Fourier Transform of the signal [2].

It is interesting to note that nowadays, an increasing number
of files in sound databases are stored in some compressed form,
for instance using MPEG-1 layer III (“MP3”) or MPEG-2 AAC
coding standards. It would be desirable to have some analysis pro-
cedure that act directly on the compressed file, rather than per-
forming a traditional analysis on the signal after decompression.
Indeed, our work shows that this is theoretically possible, since
the encoding process already uses some kind of time-frequency
transform (see figure (1).
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Figure 1: Block diagram of subband audio codecs.

In this paper, we give a proof of concept for a specific class
of time-frequency transform, the Modified Discrete Cosine Trans-
form (MDCT). This tool is actually employed in the majority of
state-of-the art audio coders, such as MPEG-1 layer 3 (“MP3”),
MPEG-2 AAC and Windows Media Audio. In a previous paper
[3], we have shown that it is possible to compute explicitly the
MDCT of a pure sinusoid. Here, we show that the inverse prob-
lem can also be performed explicitly, at least in the ideal noiseless
case: from the set of MDCT coefficients it is possible to retrieve
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Figure 2: The standard method for extracting amplitude / fre-
quency information is to uncompress the file, and process it
through a STFT-based analyzer. The proposed method performs
the analysis directly in the (quantized) MDCT domain.

the frequency, amplitude and phase of the encoded sine wave (fig-
ure (2).

The paper is constructed as follows. In section 2, we derive the
forward and inverse problems for the analysis of pure sines with
the MDCT. We then compare, in section 3, the frequency estimates
with a number of standard methods, in the ideal noiseless case as
well as in more realistic situations, such as the presence of noise.
We specifically investigate these performances in the presence of
quantization noise, which is present in the signal after a lossy com-
pression scheme. Finally, we conclude of possible extensions of
these techniques for a low-complexity analysis algorithm in the
transform domain, that can be used for indexation purposes.

2. THEORETICAL CONCEPTS

2.1. MDCT analysis of pure tones

MDCT basis functions are defined as:
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andgp[n] = 0 elsewhere, are translated sinu-
soidal windows (half-lengthL). MDCT coefficients of a function
x are computed asdp,k = 〈x, gp,k〉, with the canonical scalar
product in`2(Z).

Let us consider the MDCT of a pure sine wave :x[n] =
A sin((fπ/L)n + φ), with 0 ≤ f < L. Let us denotek0 = bfc
andε = f − k0 the integer and fractional parts of the normalized
frequencyf , respectively.

If we neglect aliasing terms from negative frequencies, i.e. far
from the edgesf = 0 orf = L, these coefficients can be explicitly
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computed [3] :
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Hence, we see that the MDCT of a pure sine is a combination
of two terms: a 4-periodic cosine modulation and an amplitude
term related to the Fourier transform of the window.

2.2. Inverse problem

Let us now focus on the inverse problem: from a set of MDCT
coefficients of an unknown sine wave, how can we estimate the
frequency, amplitude and phase of this wave ?

Identification of k0

Finding the frequency bink0 corresponding to the integer part
of the frequency is not as straightforward as in the Short-Time
Fourier Transform (STFT) case, since the MDCT coefficients have
a strong time (i.e. phase) dependency through the 4-periodic co-
sine modulation. Indeed, in a given window, the coefficient with
maximum amplitude will not always be in bink0 but, depending
on the phase, can be in binsk0 − 1 or k0 + 1.

Here, we will use a “regularized” version of the set of MDCT
coefficients, constructed as follows:

Sk,p =
�
d2

k,p + (dk+1,p − dk−1,p)2
� 1

2 (3)

for k = 0 . . . (L− 1).
This so-called “S-spectrum” has the interesting property of

being maximum, in a given windowp, at the frequency bink0,
regardless of the phase:

∀φ, ∀f max
k
Sk = Sk0 ∀k = 0 . . . (N − 1)

This result is exact [3] if we neglect the aliasing terms as in eqn. (2),
and numerical simulations showed that it still holds with the actual
MDCT coefficients fork0 ∈ [3, 1021] with a typical window half-
sizeL = 1024, i.e. (at 44.1 kHz sampling rate) in the frequency
range 43 Hz – 22 kHz.

It is also worthwhile to mention that this regularizedS-spectrum
is a good approximation of the FFT-spectrum [3].

Identification of ε
Let us defineα as :

α = −dk0−1

dk0+1
(4)

As 0 ≤ ε < 1, it appears that

α =
(ε− 1)(ε− 2)

ε(ε + 1)
≥ 0 (5)

Solving eq. 5 forε as a function ofα is a second-order equa-
tion that leads to:

ε =
3 + α−√α2 + 14α + 1

2(1− α)
for α 6= 1 (6)

which can be extended toα = 1 ↔ ε = 1/2.

In some cases, depending on the phase, the coefficientsdk0+1

anddk0−1 are both very small, and therefore the computation of
α leads to spurious results. In such cases it may be preferable to
use the the coefficientsdk0+2 anddk0−2 instead (remember that if
dk0+1 anddk0−1 are small, thendk0+2 anddk0−2 are large, and
vice-versa) :

β =
dk0−2

dk0+2
(7)

As 0 ≤ ε < 1, it appears that

β =
(ε− 3)(ε− 2)

(ε + 1)(ε + 2)
≥ 0 (8)

and againε can be deduced fromβ as:

ε =
5 + 3β −

p
β2 + 62β + 1

2(1− β)
for β 6= 1 (9)

which can be extended toβ = 1 ↔ ε = 1/2.

Decision to use either formula 6 or 9 is based on the value
of the ratioλ = |dk0 |/Sk0 . One always has0 ≤ λ ≤ 1. If λ
is very close to 1 then the main contribution toSk0 comes from
dk0 and very little fromdk0±1, therefore equation 9 should be
used; otherwisedk0±1 are not small and formula 6 should be used.
Numerical simulations have shown that the critical valueλ0 =
.9685 is close to optimality.

Finally, the procedure for the estimation ofε is as follows:8>>>><>>>>:
if λ < λ0 then

���� computeα from eq. 4
and deduceε from eq. 6

otherwise

���� computeβ from eq. 7
and deduceε from eq. 9

(10)

Extraction of the phaseφ and amplitude A
The modified phaseψ is estimated from :

dk0−1

dk0

=
ε + 1

ε− 1
tan ψ (11)

The phaseφ of the sinusoid is easily deduced from the definition
of ψ, givenk0 andε.

Similarly, one can deduce the amplitudeA from

(ε− 1)2
�
ε2dk0

2 + (ε− 2)2dk0+1
2� = A2 L

2π2
sin2 πε (12)

3. RESULTS

3.1. Noiseless case

In the ideal noiseless case, we have computed estimations of the
fractional frequencyε using the procedure (10), and the amplitude
A using equ. (12). We have taken 1024 sine waves with integer
fundamental frequencyk0 ranging from 1 to 1024 and a random
fractional frequencyε, and we have proceeded the estimation in
126 consecutive windows. The maximum error, for all windows,
as a function of the frequency, is plotted on figure 3.
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Figure 3:Value of the maximum (across 126 consecutive windows)
of the error in the estimation of the fractional frequencyε.

For a large range of frequencies, the error in the frequency
estimate compares favorably with previous techniques. In [4], re-
sults based of the Odd-DFT, a complex version of the MDCT, are
reported with an accuracy of 1 % of the bin size). Here, results
are better in the rangek0 ∈ [5 − 1008], and much better in most
cases (up to10−6 for average frequencies). For frequenciesk0 too
close to 0 or theL, it is not possible to neglect the aliasing terms
anymore, and the approximation (2) is not valid.
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Figure 4:Value of the maximum (across 126 consecutive windows)
of the error in the estimation of the amplitudeA.

We have also investigated the estimation of the amplitudeA of
the analyzed sine wave. Corresponding plots are shown on figure
4. Notice the large errors peaks due to a bad estimation ofε upon
which the estimation ofA is made (according to eqn. 12).

As a basis for comparison with other methods based on the
Short-Time Fourier Transform (STFT), we have compared our re-
sults with the results presented in [2]. The six methods are : (1)
plain FFT (2) parabolic interpolation (3) triangle algorithm
(4) spectral reassignment (5) derivative algorithm (6) phase
vocoder (based on [5]). Note that all six methods are based on the
FFT, and are therefore invariant through phase shifts.

Comparisons are made on 2090 sinusoids with random fre-
quencies (with an exponential law between 215 and 4321 Hz),
and frequency errors are measured in percentage of halftones. Re-
sults (mean error, variance and max error) are presented in Ta-
ble 1. The frequency estimation based on the MDCT has similar
performances as the best FFT-based method, the so-called trian-
gle interpolation: its mean and variance are slightly lower, but the
maximum error is slightly higher.

Frequency estimates of pure sines

Method µ σ max
(1) plain FFT 28.11 28.12 149.76

(2) parabolic interp. 0.054 0.118 1.096
(3) triangle algo. 0.006 0.016 0.136
(4) spectral reass. 0.048 0.115 1.097
(5) derivative algo. 0.048 0.115 1.100
(6) phase vocoder 0.048 0.115 1.099

MDCT 0.005 0.013 0.167

Table 1: Frequency error in percentage of halftones. Results for
methods 1 to 6 are extracted from [2].

Amplitude estimates of pure sines

Method µ σ max
(1) plain FFT 0.470 0.428 1.424

(2) parabolic interp. 0.001 0.001 0.008
(3) triangle algo. 0.000 0.000 0.001
(4) spectral reass. 0.001 0.002 0.017
(5) derivative algo. 0.001 0.002 0.017
(6) phase vocoder 0.001 0.002 0.017

MDCT 3.8× 10−4 6.5× 10−4 0.007

Table 2: Amplitude error in dB. Results for methods 1 to 6 are
extracted from [2].

As for the frequency estimation (Table 2), the MDCT method
outperforms at least 5 out of 6 FFT-based methods. Unfortunately,
results in [2] are not given with sufficient precision for the triangle
interpolation method, therefore a precise comparison is not possi-
ble.

As a conclusion, for pure sinusoidal signals, the estimation
method presented in section 2 performs equally well as the best
FFT-based methods for the local estimation of frequency and am-
plitude.

3.2. Influence of noise

We also investigated the influence of noise in the precision of these
estimates. More specifically, we have focused our studies on the
influence of white noise and quantization noise. In the case of
quantizationapplied to the MDCT coefficients, the noise is corre-
lated with the MDCT signal, and estimates can be biased when the
quantization is performed on a low number of bits. For the sake
of simplicity we have only considered uniform quantization, al-
though some MDCT-based codecs such as AAC use non-uniform
quantization (but in this case exact comparisons are difficult since
this quantization does depend on the implementation).
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Figure 5: Value of the mean (across 254 consecutive windows) of
the frequency error in the presence of white noise (full line) and
uniform quantization of the MDCT coefficients (◦). NumbersN
indicate the number of bits for the uniform quantization.

Figure 5 shows the variations of the mean error in the estima-
tion of the frequency, as a function of the noise level, for a given
sine wave. In the case of white noise, the logarithm of the error
is a regularly decreasing function of the signal-to-noise ratio, until
it reaches the asymptotic value of the noiseless case (in this case
the error caused by the noise is much lower than the error due to
the approximations in the computation of the equation (2) (aliasing
terms neglected, linearization ofsin terms). In the case of quan-
tization noise (round marks in figure 5), the error curve has more
fluctuations, but it almost consistently above the white noise error
at the same SNR.

We have applied this technique on a real acoustic sound, the
recording of an arpeggio played on a flute. Results are presented
in figure 6. The algorithm has correctly identified the fundamental
frequency, and the slow fluctuations of the amplitude (vibrato) are
well measured. Note that so far this algorithm only identifies one
peak in the MDCT domain, so it only works for monophonic sig-
nals, with a fundamental that has a stronger energy than the higher
harmonics.

4. CONCLUSION : A BASIS FOR FEATURE
EXTRACTION IN THE TRANSFORM DOMAIN

In this paper, we have investigated the possibility of extracting lo-
cal frequency / amplitude information of a tonal signal from its
MDCT coefficients. Explicit formulas prove the relevance of this
approach in the noiseless case. We have also shown that the ac-
curacy of these frequency estimates, as well as the robustness to
noise, is comparable to the one obtained by Short-Time Fourier
Transform-based methods, such as the phase vocoder.

Future work will focus on two aspects:

• improvement of the existing algorithm. In particular, it
would be desirable to improve the robustness of the am-
plitude estimation with respect to noise. This is possible -
in theory - since equation 12 only depends on two MDCT
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Figure 6: Frequency and amplitude estimation of the fundamental
of a flute sound.

coefficients ; taking more coefficients into account would
average the noise effects.

• work on complex spectra. At the moment the algorithm
takes into account only one (possibly time-varying) tone.
With a local peak picking algorithm in theS-spectrum it
may be possible to detect the more prominent partials. This
can be the basis of a high-precision pitch estimation, or a
way to compute the inharmonicity factor of piano tones, for
instance.

Just another frequency estimator then ? Well, in a way, yes,
but this one can actually be useful ! Since many signals nowadays
are stored in a compressed form, such as in the MP3 or MPEG-2
AAC, this scheme is indeed the basis of a low-complexity feature
extraction from already encoded filed, that can be used for audio
indexing.
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