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ABSTRACT 

While Independent Subspace Analysis provides a means of 
blindly separating sound sources from a single channel signal, it 
does have a number of problems. In particular the amount of 
information required for separation of sources varies with the 
signal. This is as a result of the variance-based nature of Principal 
Component Analysis, which is used for dimensional reduction in 
the Independent Subspace Analysis algorithm. In an attempt to 
overcome this problem the use of a non-variance based 
dimensional reduction method, Locally Linear Embedding, is 
proposed. Locally Linear Embedding is a geometry based 
dimensional reduction technique. The use of this approach is 
demonstrated by its application to single channel source 
separation, and its merits discussed. 

1. INDEPENDENT SUBSPACE ANALYSIS  

Independent Subspace Analysis (ISA) provides a means of blind 
sound source separation from single channel mixtures [1]. ISA 
represents sound sources as low dimensional subspaces in the 
time-frequency plane. The single channel mixture is assumed to 
result from the sum of a number of  unknown independent 
sources. The single channel mixture is converted to a time-
frequency representation such as a spectrogram by means of 
carrying out a Short Time Fourier Transform on the signal and 
retaining only the magnitude values.  

The resulting spectrogram is then assumed to result from the 
superposition of l unknown independent spectrograms. Further 
each independent spectrogram is assumed to be represented as 
the outer product of an invariant frequency basis function fj and a 
corresponding time basis function tj. This yields: 
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One way to achieve the decomposition of a spectrogram into 
a sum of outer products as in eqn. (1) is the use of Principal 
Component Analysis (PCA). Also known as the Karhunen-
Loeve Transform, PCA transforms a set of correlated variables 
into a number of uncorrelated or orthogonal variables that are 
termed principal components. The first principal component 
contains the largest amount of the total variance as possible, and 

each successive principal component contains as much of the 
total remaining variance as possible.  

As a result of this property one of the uses of PCA is as a 
method of dimensional reduction, by discarding components that 
contribute minimal variance to the overall data. Therefore 
carrying out PCA on a spectrogram and discarding components 
of low variance will result in a set of low dimensional subspaces 
that represent aspects of the original spectrogram. However the  
components returned by PCA are only orthogonal, and are not 
statistically independent. 

In order to achieve statistically independent basis functions a 
further technique, Independent Component Analysis (ICA) is 
performed on the components retained from PCA. Independent 
Component Analysis (ICA) attempts to separate a set of 
observed signals that are composed of linear mixtures of a number 
of independent non-gaussian sources into a set of signals that 
contain the independent sources [2] [3]. The combination of PCA 
for dimensional reduction followed by ICA to achieve 
independent basis functions results in the technique known as 
Independent Subspace Analysis (ISA).  The method can be 
viewed as a two-step process, firstly dimensional reduction and 
secondly obtaining independent components from the reduced 
dimensional data. Once the independent basis functions have 
been obtained they can then be combined to resynthesise the 
independent sources as described in [1]. 

However there are a number of problems with ISA. Of 
particular interest is that the number of basis functions required 
to identify the sources was found to vary from signal to signal, 
depending on the relative amplitudes of the sources. Using the 
threshold method described in [1] was found to be unreliable in 
determining the required number of basis functions. This 
indeterminacy is as a result of the variance-based nature of the 
PCA stage of the algorithm. This inherently biases the analysis 
towards the loudest sounds in the overall spectrogram, which will 
account for the largest amounts of variance. As a result sources 
with low amplitude relative to other sources in the spectrogram 
will require larger numbers of components to be retained from the 
dimensional reduction stage before these low amplitude sources 
can be recognised.  

Techniques to overcome this limitation, such as the use of 
sub-band preprocessing and the use of prior subspaces for 
sources known to be present in the mixture signal, have been 
proposed in [4] and [5]. However these techniques make use of 
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prior knowledge about the sources of interest in the signal and 
this information may not always be available. In such cases 
where prior knowledge is not available and where some of the 
sources are known to have lower amplitudes relative to other 
sources in the mixture signal it can be seen that using a 
dimensional reduction technique that is not variance-based could 
potentially improve the robustness of the ISA method. One such 
dimensional reduction technique is Locally Linear Embedding.  

2. LOCALLY LINEAR EMBEDDING 

Locally linear embedding (LLE) is a technique for dimensional 
reduction based on simple geometric intuitions [6] [7]. LLE 
attempts to obtain a low dimensional mapping for high 
dimensional data with the property that nearby points in the high 
dimensional space remain nearby and are similarly co-located 
with respect to each other in the low dimensional space. In other 
words the mapping attempts to preserve the local configurations 
of nearest neighbours.  

The data is assumed to consist of N real-valued vectors Xi of 
dimensionality D. These vectors are taken as samples of the 
underlying manifold. Provided that the underlying manifold is 
well sampled then each vector and its nearest neighbours can be 
assumed to lie on or close to a locally linear piece of the 
underlying manifold. These pieces of the manifold are then 
characterised by the use of linear coefficients that reconstruct 
each vector from its nearest neighbours. In the simplest case K 
nearest neighbours are identified per vector as measured using 

Euclidean distance, though the use of other distance metrics is 
possible. Reconstruction errors are then measured by: 
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where the weights Wij contain the contribution of the jth vector to 
the reconstruction of the ith vector. To obtain the Wij the above 
cost function is minimised subject to two constraints, a 
sparseness constraint and an invariance constraint. The 
sparseness constraint is that each vector Xi can only be 
reconstructed from its K nearest neighbours, in effect forcing Wij 
= 0 if Xj is not one of the nearest neighbours. The invariance 
constraint is that the rows of the weights matrix are constrained 
to sum to one, ie Σ j Wij = 1. The optimal weights can then be 
found by solving a set of constrained least squares problems.  

An important property of these constrained weights is that 
for any given vector they are invariant to rotations, rescalings and 
translations of that vector and its K nearest neighbours. The 
invariance to rotations and scalings comes from the form of eqn 
(2) and the invariance to translation is enforced by the constraint 
that the rows of the weights matrix sum to one. As a result of 
this the weights characterise intrinsic geometric properties of 
each neighbourhood as opposed to properties that depend on a 
particular frame of reference. 

The data is then assumed to be on or near a smoothly 
varying non-linear manifold, with the dimensionality of the 
manifold being d<<D. It is then assumed that there exists a linear 
mapping, consisting of a translation, rotation and rescaling, which 
maps the high dimensional neighbourhoods to global coordinates 
on the underlying manifold. As the reconstruction weights Wij are 
invariant to translation, rotation and rescaling their 
characterisation of local geometry in the original data can be 
expected to be equally valid for local pieces of the underlying 
manifold. In other words the weights Wij that reconstruct the 
original vectors Xi of dimensionality D can also be used to 
reconstruct the underlying manifold in d dimensions.  

The next and final step in LLE is then to map the high 
dimensional inputs Xi to a low dimensional output Ri which 
represent the underlying manifold. This is done by finding the d 
dimensional coordinates of each Ri to minimise the embedding 
cost function: 
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As can be seen the cost function is very similar to that of eqn. 
(1), and is again based on locally linear reconstruction errors. 
However in this case the weights Wij are fixed and the outputs Ri 

are optimised. As can be seen the embedding is calculated directly 
from the Wij without reference to the original inputs Xi and as a 
result the embedding is performed only with reference to the 
geometric information encoded in the Wij. In effect the algorithm 
finds low dimensional outputs Ri that can be reconstructed from 
the same weights Wij as the original high dimensional data Xi .  

The embedding cost function is optimised by solving a 
sparse N x N eigenvalue problem which is a global operation over 
all the data points. This contrasts with the fact that the 
reconstruction weights are calculated from the local 
neighbourhood of each input. This is how the algorithm attempts 
to discover global structure, it attempts to integrate information 
from overlapping local neighbourhoods. Like PCA the resultant 
outputs Ri are orthogonal to each other. This is achieved in 
solving the eigenvalue problem. As a result of this LLE shares the 
property with PCA that only as many outputs Ri  as  required 
need be calculated. 

The only parameters for the algorithm are chosing the 
number of dimensions d to represent the data, and the number of 
neighbours K for each data point. It has been observed in [7] that 
the results of LLE do not depend sensitively on the number of 
nearest neighbours, with the provisions that K must be greater 
than d and that too high a value for K invalidates the assumption 
that a vector and its neighbours can be modelled linearly. 

LLE has proved sucessful in determining the underlying 
structure of high dimensional data in cases where PCA fails to 
obtain the underlying structure. LLE appeals to the underlying 
local geometry of the data presented to it to carry out 
dimensional reduction, whereas PCA carries out dimensional 
reduction with reference to the variance of the data. In some cases 
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the geometric methods of LLE provide a more salient description 
of the data than a variance based approach such as PCA. It 
should also be noted that, like PCA, LLE also has other uses 
besides that of dimensional reduction. LLE can also be used as a 
clustering algorithm and for pattern matching. 

3. ISA USING LLE FOR DIMENSIONAL REDUCTION 

As noted previously PCA performs redundancy reduction based 
on variance. As a result, when attempting to separate sources 
from a spectrogram PCA is biased towards the loudest sources 
in the spectrogram and can recover a number of principal 
components from these sources before recovering a component 
that contains data from one of the lower amplitude sources 
present. This means that the number of components that needs 
to be retained to identify all the sources present varies with the 
relative amplitude of the sources. This can cause difficulties 
when attempting to separate sound sources which have much 
lower amplitudes than some of the other sources present in the 
mixture signal, for example hi-hats tend to be much lower in a 
mixture signal than either a snare drum or a kick drum. 

LLE on the other hand determines components based on 
regions of similarity (or local neighbourhoods). Therefore LLE 
should be less prone to variations in relative amplitude between 
sources in the mixture spectrogram, and the variation in the 
number of components required to identify sources should be 
less severe than that observed when using PCA. 

Consider a spectrogram Y of size n x m, where n is the 
number of frequency channels and m is the number of time slices 
or frames. Then with regards to the LLE algorithm the 
dimensionality D of the data is given by  n and the number of 
input vectors N is given by m. The outputs Ri are in this case 
taken to represent the evolution of similar neighbourhoods 
through the spectrogram. These similar neighbourhoods are made 
up of time slices that have similar frequency content, and so the 
outputs should capture events in the spectrogram that have 
similar frequency content. Alternatively, by transposing Y the 
neighbourhoods will then consist of frequency regions that have 
similar evolution through time, resulting in outputs that contain 
groups of frequencies that occur together, in other words 
frequency characteristics of a given source. 

Figure 1 below shows the first three output vectors Ri 
obtained from carrying out LLE on a drum loop containing two 
occurrences each of a snare drum and kick drum, and eight 
occurrences of a hi-hat. The high hats occur at a lower amplitude 
relative to that of the snare and kick drums and so would be 
harder to detect using a variance based method such as PCA. In 
this case the spectrogram was orientated so that the outputs 
would capture time events in the spectrogram that have similar 
frequency content. The number of nearest neighbours K was set 
at 30 and d was chosen as 3.  

As can be seen LLE has successfully captured the general 
characteristics of the drum loop, having prominent peaks in 

amplitude at the correct locations for each of the three drums. 
This compares favourably with the results obtained using PCA 
which are shown in Figure 2. While both snare and bass drum are 
clearly identified in the first two principal components, the hi-
hats only show up as very small peaks in the third principal 
component and are not clearly defined. It can be seen that in this 
case LLE has more successfully captured information relating to 
the hi-hats, which were low in amplitude relative to the snare 
and bass drum. 

 

Figure 1:First 3 components obtained using LLE (K=30) 

 

Figure 2: First 3 components obtained using PCA 

As noted previously the results of LLE do not depend 
sensitively on the choice of the number of nearest neighbours. 
Choosing different values for K results in outputs that essentially 
capture the same information on the sources. Figure 3 shows the 
results obtained by carrying out LLE with K = 50 on the same 
drum loop as in Figure 1. The sources have been captured in the 
same order, and the same main peaks occur in each source but the 
overlap between the sources is different. In this case the snare 
vector shows little evidence of the hi-hats, which instead show 
up in the bass drum vector, and the hi-hat peaks are more 
consistent in their amplitudes in the hi-hat vector. 
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Figure 3:First 3 components obtained using LLE (K=50) 

Despite capturing the overall structure of the sources, smaller 
peaks are still visible in the output LLE vectors where other 
drums occur. These peaks are possibly due to the fact that some 
of the neighbourhoods integrated in the final step of LLE may 
consist of neighbours that belong to more than one source, 
especially in cases where sources occur simultaneously. The 
vectors recovered are also not statistically independent. 

Having achieved dimensional reduction using LLE the 
outputs from LLE can be passed to an ICA algorithm in a similar 
manner to the way the outputs from PCA are passed to an ICA 
algorithm in ISA, effectively performing ISA in the same manner 
as before but substituting LLE for PCA in the dimensional 
reduction step of the algorithm. This results in a set of 
independent basis functions which can be resynthesised as 
described in [1]. Figure 4 shows the independent sources 
obtained if the Ri shown in Figure 1 are transformed using ICA. 
As can be seen improved separation of the sources has occurred, 
with noticeably clearer peaks for both the bass drum and hi-hats.  

 

Figure 4: Independent Components obtained from ICA of 
LLE outputs (K=30) 

When the Ri for K = 50 are transformed using ICA the sources are 
again recovered correctly.  The independent components obtained 
are shown in Figure 5. However as can be seen in this case 

performing ICA has lead to a reduction in peak height for the hi-
hats, with the dominant peaks in the hi-hat component being 
those of the snare drum. This occurs as a result of the two 
prominent local minima present in the LLE hi-hat vector. As ICA 
is invariant to scaling these two minima are regarded by the ICA 
algorithm to be as important as the peaks.  

This highlights the fact that while LLE itself is not 
particularly sensitive to the choice of K, using LLE as a 
substitute for PCA in the dimensional reduction step of 
Independent Subspace Analysis results in an increased 
sensitivity to the choice of K . Careful choice of K results in LLE 
vectors which give better separation when passed to the ICA 
step of ISA, though the required separation is still always 
achieved to some degree. Unfortunately at present there is no 
suitable method for choosing K for optimal performance with the 
ICA step and so this remains an issue for future research. 

 

Figure 5: Independent Components obtained from ICA of 
LLE outputs (K=50) 

In some cases the LLE algorithm can fail to characterise the 
sources sufficiently to allow extraction using ISA. One potential 
reason for this is that as mentioned previously some of the 
neighbourhoods embedded in the final step of LLE may contain 
neighbours from different sources. In some cases, if the nearest 
neighbours do not consistently come from the same source, 
whether as a result of similar frequency characteristics, or due to 
overlapping sources causing the occurrence of similar vectors, 
then the LLE algorithm will fail to characterise the sources 
adequately. This is as a result of the algorithm mapping faraway 
inputs to nearby outputs. This type of failure can also occur if 
the original data is too spare, noisy, or if there is not enough data 
to ensure that the underlying manifold is well-sampled [7]. 
However despite the fact that the algorithm will fail under certain 
conditions, LLE has shown itself to be capable of better 
characterising the sources present in a mixture signal in many 
circumstances where PCA fails to do so, and can often do so 
using fewer dimensions than PCA. 
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4. CONCLUSIONS 

This paper has proposed the use of LLE as a potential means of 
overcoming some of the problems associated with the variance 
based PCA step of ISA. LLE is shown to be capable of 
characterising sources with fewer numbers of components than 
that required using PCA. This is due to the fact that LLE makes 
use of local geometry to embed high dimensional data in a low 
dimensional space. However in some cases LLE does fail to 
characterise the sources correctly due to too much overlap 
between integrated neighbourhoods. Despite this LLE has in 
many cases proved to be an improvement over PCA for 
dimensional reduction in the ISA algorithm and has proved to be 
a useful tool for attempting sound source separation. 
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