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ABSTRACT 

The generalisation of conventional linear time invariant filter 
theory from one dimension to the two-dimensional time-
frequency (TF) domain provides a powerful tool for the 
simulation of complex time variable systems. TF filtering is 
performed as convolution in the TF domain and is based on non-
parametric modelling using direct convolution along the time or 
frequency axis. A method based on short-time Fourier analysis 
has been developed to produce non-stationary signals with 
desirable time and frequency characteristics. This method is 
faster than non-recursive realisations and yields a simple 
synthesis procedure. The application of filtering in the TF 
domain for the simulation of sound source motion is presented. 

1. INTRODUCTION 

The generalisation of conventional linear time invariant (LTI) 
filter theory from one dimension to the two-dimensional time-
frequency (TF) domain provides a powerful tool for the 
simulation of complex time variable systems. This type of 
filtering provides also increased flexibility for detailed filtering 
operations that cannot be realised with one-dimensional methods.   
In this manner, considering the output of a time varying system, 
the interaction between the input signal and the system can be 
regarded as an operation in the TF domain between the TF 
expansion of the signal and the TF response of the system [1].  

In this paper we continue to develop our recent work, where 
we discussed the equivalence of TF convolution filtering with 
respect to the time variable and traditional LTI filtering in the 
time domain and applied TF filtering for the realisation of time 
varying and frequency dependent artificial reverberation [2]. 
Here the equivalence between the traditional frequency 
modulation and the TF convolution with respect to the frequency 
variable is studied, and the TF convolution along the frequency 
axis is employed for the simulation of sound source motion. TF 
filtering comprises three stages, namely the analysis, the 
processing and the synthesis stage, and hence is computationally 
expensive. In order to speed up the calculations a recursive 
algorithm for the evaluation of the STFT is utilised. This 
algorithm is faster when compared to non-recursive realisations 
and yields a simple synthesis procedure. 

2. TIME-FREQUENCY FILTERING 

The idea of LTI filtering is generalised to filtering operations in 
the TF plane where synthesis of signals from modified TF 
distributions yields classes of TF filters in two dimensions [3] 
[4]. TF masking filters are able to perform localised selection of 
TF components while TF convolution filters perform a 
transformation rather than a simple masking in the TF plane.  

A schematic presentation of the basic elements of filtering in 
the TF plane is illustrated in Figure 1. The signals are expanded 
into the TF domain, where they are filtered by a one- or two- 
dimensional operation, and the product is synthesised in the time 
domain using the corresponding synthesis formulae. The TF 
expansion ),( ωtS x  of a signal ( )x t  is convolved with the two-

dimensional transfer function ( , )H t ω  to yield the expansion 

),( ωtS y  of the response ( )y t . Since it is desirable to 

reconstruct the time history of the output after the filtering 
operation the result of the operation in the TF plane should be a 
valid TF distribution, i.e. there exists a signal which corresponds 
to this TF distribution. If this is not the case the output signal can 
be synthesised in the time domain using approximation 
techniques [5].  

 
Figure 1: Filtering operation in the TF plane.  

2.1. TF Convolution along the frequency axis 

TF convolution with respect to the frequency variable ω 
corresponds to multiplication in the time domain if the TF 
distributions used for this operation preserve the property of 
multiplication [6].  TF convolution along the frequency axis can 
be described as 

   ( , ) ( , ') ( , ') ',y xS t H t S t dω ω ω ω ω
∞

−∞
= −∫        (1) 
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where the time histories of the input signal and the system’s 
impulse response are related in the time domain by the product 

( ) ( ) ( )y t h t x t=  and in the frequency domain by the 

convolution ( ) ( ) ( )Y H Xω ω ω= ∗ .  
Thus TF convolution along the frequency axis can be 

implemented as filtering of the time-frequency decomposition of 
the input signal ( )x t  for every time instant it , as shown in 
Figure 2. If the TF distribution used for the operation satisfies 
the property of multiplication and the distributions involved in 
the operation are valid, then the product of the TF operation is 
also valid. 

 
Figure 2: TF convolution along the frequency axis.    

3. IMPLEMENTATION OF TIME-FREQUENCY 
FILTERS  

TF filtering operation is computationally expensive since it 
requires the evaluation of the decompositions of the input signal, 
the system response and the inverse transform of the resulting 
distribution. In order to accelerate the computation a recursive 
algorithm for the evaluation of the STFT is employed. The 
particular algorithm is faster compared to non-recursive 
realisations, is well suited for real-time applications and yields a 
simple synthesis procedure.  

3.1. Recursive Implementation of the STFT 

Many different proposals have appeared in the literature 
concerning the recursive evaluation of TF distributions [7] [8] 
[9]. The recursive implementation of the STFT used in this work 
is based on the notion of the running z-transform that is defined 
as the short time z-transform of a delayed signal [10]. For a 
sequence ( )x n , the running z-transform is 

                           
1

0

( , ) ( ) .
N

k

k

n z x n k z
−

−

=

Φ = −∑                          (2) 

For a fixed n , ( , )n zΦ  is the z-transform in the variable k  of 

the segment ( )x n k− , 0 1k N≤ ≤ −  of ( )x n . The inversion 
formula, considering evaluation on the unit circle, is  

                           
1

0

1( ) ( , ),
N

m

m

x n n w
N

−
−

=

= Φ∑                        (3) 

where   
2

.
j

Nw e
π

=  Using this definition it is easy to recognise 
in the running z-transform the sampled version of the Fourier 
transform of a delayed sequence ( )x n k− , 0 1k N≤ ≤ − . For 
simplicity the above formulation assumes a rectangular window 
function applied to the signal. By substituting 1k p+ =  in (2) 
one obtains  

1
( 1, ) ( )

N
p

p

n z z x n p z−

=

Φ − = −∑                         (4) 

and it follows that the function ( , )mn w−Φ satisfies the first 
order recursion equation  

   1( , ) ( 1, ) ( ) ( ).Nn z z n z x n z x n N− −Φ − Φ − = − −         (5) 

By evaluating the running z-transform on the unit circle, i.e. 
mz w−=  the function ( , )mn w−Φ  has the simple recursive form 

       ( , ) ( 1, ) ( ) ( ).m m mn w w n w x n x n N− −Φ − Φ − = − −        (6)  

This defines a discrete recursive system with input ( )x n , output  

( , )mn w−Φ  and system function 

1

1( , ) .
1

N

m

zS m z
w z

−

−

−
=

−
                              (7) 

The system consists of a shift register with output ( )x n N− , a 
delay element and a multiplier, as illustrated in Figure 3. 
Connecting N  such systems together in parallel results in a 
running Discrete Fourier Series (DFS) spectrum analyser that has 
a filter bank structure, as shown in Figure 4. Prior to 
reconstructing the signal from its Fourier series expansion, it is 
possible to filter the TF coefficients according to a time variable 
system function implementing non-stationary TF convolution 
filtering.  
 

 
Figure 3: Elementary filter structure.   

 

 
Figure 4: Recursive DFS analyser.   

4. SIMULATION RESULTS 

The Doppler effect is associated with the shift in frequency and 
wavelength of waves that results from the relative motion 
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between a sound source and a receiver. Thus reproduction of 
sound source motion derives from controlling frequency 
characteristics with time. In the context of TF filtering the 
Doppler effect can be implemented by TF convolution along the 
frequency axis. A signal whose frequency content undergoes a 
Doppler shift is expressed as  

( , )( ) ( ) ,t
Dx t x t eϕ ω=                              (8) 

where ( , )tϕ ω  is complex. Considering for example 

( , )t iptϕ ω =  then from (8) it is evident that the frequency 

content of the signal ( )x t  has been shifted by p  rad/s. The 

advantage of employing TF filtering is that ( , )tϕ ω  is a function 
of both time and frequency and thus the frequency shift can be 
time dependent. 

For a discrete implementation of the TF convolution along 
the frequency axis the infinite integration of (1) has to be 
replaced by a finite summation. Thus the discrete realisation of 
the TF filtering along the frequency axis is expressed as  

1

' 0
( , ) ( , ') ( , '),

M

y h x
m

S n m S n m m S n m
−

=

= −∑             (9) 

where yS , xS  represent the TF expansion of the output and 

input signal respectively and hS  represents the two dimensional 
transfer function of the system. The size of the discrete TF 
matrices may be arbitrary concerning the frequency axis and 
hence the product will be of size 2 1M −  where M  is the 
frequency resolution of the input signal and the system’s transfer 
function. It is noted that the length of the result is not the same as 
the resolution of the convolved decompositions. For a valid 
operation the resolution of the system’s response TF 
decomposition has to be the same as the resolution of the input 
decomposition.  

As an application case a sinusoidal two component signal is 
filtered according to (9) by a system that corresponds to a 
variable filter whose frequency response is higher as time 
increases. The TF decompositions of the original signal and the 
system’s response are obtained using the running DFS analyser 
and are illustrated in Figure 5 and 6 respectively. The response 
of the system was designed by specifying its instantaneous 
frequency to follow the function shown in Figure 7.  

 

 
Figure 5: TF expansion of input signal.  

For the implementation of TF convolution along the 
frequency axis in case of real signals the direction of convolution 
has to be considered since repositioning of the frequency energy 
may destroy the symmetric structure of the spectrum. Thus the 
TF convolution is performed first up to the folding frequency 
and then in the opposite direction from the sampling frequency 
to the folding frequency. For the present example however the 
analytic representations of the signals were used and thus the 
operation was only applied in a single direction up to the folding 
frequency. In order to study the equivalence of TF filtering along 
the frequency axis and traditional modulation the result of the TF 
filtering is transformed to the time domain and it is compared 
with the time series obtained from the modulation operation in 
the time domain. For the shake of clarity in Figure 8 the detailed 
comparison between segments of the two time series is 
presented. It is interesting to observe that the signal 
corresponding to TF filtering follows the signal corresponding to 
conventional frequency modulation. The small difference in the 
amplitude of the two signals is due to the discretisation of the 
time and frequency variables. The spectral content of the two 
signals is the same as can be seen from their TF representations 
shown in Figure 9 and 10 respectively. The fuzzy structure of the 
initial part of the TF representations is due to the recursive 
structure of the algorithm for the evaluation of the STFT. 

 
 

 
Figure 6: TF expansion of system’s response.    

 

 
Figure 7: Instantaneous frequency of system’s response.  
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Figure 8: Detailed comparison between the results of TF 

filtering along the frequency axis and modulation. 

 
Figure 9: TF convolution along the frequency axis.  

 
Figure 10: TF expansion of the result of conventional 

frequency modulation.  

5. CONCLUSIONS 

Filtering of signals in the TF domain provides a tool for 
detailed filtering operations that cannot be realised with one-
dimensional methods. In this work the operation of TF 
convolution along the frequency axis was considered and was 
shown to correspond to frequency modulation. However in order 
to use the advantages of TF filtering it is desirable to synthesise 

time histories from modified distributions, which requires 
considerable computation when compared to one-dimensional 
filtering methods. In order to release this restriction a recursive 
algorithm for the evaluation of the STFT was applied. The 
particular algorithm is faster compared to non-recursive 
realizations, yields a simple synthesis procedure and is well 
suited for real-time applications. The operation of TF 
convolution along the frequency axis for the simulation of sound 
source motion was presented as an application case.  
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