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ABSTRACT 

This paper describes an approach to real time partial tracking in 
an analysis\transformation\resynthesis system using a 
combination of linear and bi-linear time-frequency techniques. 
Tests of the system have been made using both natural and 
synthetic sounds. Results are presented and areas for further 
research and development are discussed. 

1. INTRODUCTION 

Much of the recent work on analysis and resynthesis for  spectral 
modeling of sound has concentrated on developing a sinusoidal 
plus residual signal model. Description of the residual signal has 
ranged from the parameters of a filtered noise source [1],[2] to 
those of harmonic band wavelets [3]. Augmented Additive 
Synthesis (AAS) is a proposed system which seeks to describe 
timbre as a linear combination of perceptually orthogonal sound 
types. This combination may, or may not, include sinusoids or 
filtered noise as well as other sound types to offer a meaningful 
palette of descriptions for as wide a range of timbres as possible, 
encompassing both real and synthetic targets in real time. 

For harmonic sounds it is likely that a linear combination of 
sinusoids will be one of the sound types that contributes to the 
AAS model. Additive resynthesis of sinusoids has traditionally 
been based on phase vocoder analysis of sounds with subsequent 
peak detection and continuation, known as partial tracking, such 
as that used in the spectral modeling synthesis (SMS) system. 
Although recent versions of SMS software offer real-time 
interaction with the analysis data during resynthesis simultaneous 
analysis/interaction/resynthesis is not possible. One of the 
reasons for this is that traditional partial tracking algorithms 
require acquisition of the entire audio signal before analysis can 
begin. With knowledge of the entire signal events can be 
analysed from their steady state towards their transient onsets 
(i.e. backwards) and such an algorithm can take a revisionist 
approach to existing analysis data by adapting it as the analysis 
progresses. 

2. PARTIAL TRACKING 

One of the aims of AAS is to provide a more intuitive system for 
musicians to use by offering parameters which relate more 
directly to perceptual effect.  Therefore parameters relating to 
loudness and frequency are considered as having greater 
perceptual relevance than the complex and abstract mathematical  

 
data used in the transforms themselves. It is also important to 
reinforce intuition and usefulness through realtime interaction 
(action by the player, feedback by the system) with these 
parameters.  As such these requirements demand a partial 
tracking algorithm that can operate in realtime (or within the 
limitations of analysis windowing if implemented). Therefore it 
is useful to investigate possible computationally efficient 
methods for such a system that might offer additional 
information within a single frame about the type of signal under 
analysis. 

The advantages and limitations of the short time Fourier 
transform (STFT) are well documented [4].  The STFT is a linear 
analysis technique that attempts to extend the Fourier analysis of 
stationary signals to non-stationary signals by dividing the input 
into overlapping windows of shorter signals.  Each windowed 
signal is therefore assumed to be stationary.  AAS makes use of 
the STFT and derives amplitude and frequency for spectral peaks 
by comparing the magnitude data for the DFT of the windowed 
signal with that of its derivative [5]. Simply interpreting spectral 
peaks for signals which contain transients and/or few 
harmonically related elements may lead to incorrect 
identification of parts of such signals as sinusoids. Such systems 
may therefore attempt to use sinusoids to recreate broad band 
signal components which is inefficient, counter-intuitive and 
difficult to achieve if the number of sinusoidal oscillators is 
limited (which may well be the case for real time operation). It is 
for this reason that systems such as SMS with partial tracking 
and synthesis of the residual with filtered noise have been 
developed. 

 

3. THE WIGNER BI-LINEAR TIME-FREQUENCY 
DISTRIBUTION 

When considering individual frames in isolation the STFT is not 
able to provide enough information with regards to the type of 
signal within a bin to determine which resynthesis technique 
should be used to reproduce it. Bi-linear (or quadratic) time-
frequency analysis techniques applied to the same windowed 
frames can give much higher time resolution than the STFT, 
since they do not assume a  stationary signal within a frame. The 
disadvantage of such techniques is that they introduce 
interference (or cross) terms due to their inherent non-linearity 
[4]. A well known example of these techniques is the Wigner 
distribution (WD). 
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The WD is defined for all time and for real time analysis of 
sampled signals a running window is applied to the input 
resulting in the pseudo discrete WD (PDWD). Exploiting 
symmetry and recasting in a form which can be evaluated using 
the FFT the PDWD of a discrete signal x(n) is as follows: 
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Where y(m) is x(n) upsampled by a factor of 2 and 

interpolation filtered. We can see from this equation that the 
PDWD is the DFT of a form of auto correlation function 
performed on the windowed signal. The time resolution of the 
PDWD is determined by the step size of m and reaches its upper 
limit when m=1. The frequency resolution is determined by the 
windowing function used and the window length and is 
proportional to that of the STFT for the same window function 
and sequence length. 

 

4. PARTIAL TRACKING USING THE STFT AND THE 
WIGNER DISTRIBUTION 

For the STFT, provided correct oversampling of the signal is 
carried out in the time domain, the magnitude of the assumed 
components (basis functions) can be determined for each bin.  
Then the frequency and amplitude of the sinusoidal function can 
be derived taking into account any energy smearing caused by 
the windowing function [5].  Whilst techniques such as 
comparing the peaks in the magnitude spectrum to the transform 
of the analysis window can be used to distinguish partials from 
other frequency components for certain signals, existing methods 
for partial detection also use a peak continuation algorithm to 
determine which frequency components are ‘well behaved’ 
partials[2]. We hope to use Wigner analysis of the same 
windowed data as the STFT to offer greater insight into the 
nature of signals on a more localised basis.  

Partial tracking systems which perform their analysis ‘off 
line’ can detect a number of peaks for each frame and then, 
considering all frames together, determine which peaks within 
each frame are partials via some form of peak continuation. For a 
real time application where the delay between input (analysis) 
and output (synthesis) must be as low as possible such an 
approach is not possible. If possible a partial tracking algorithm 
which is designed to operate in real time should be able to 
determine which peaks are due to deterministic partials for each 
frame as it analysed. If this cannot be done reliably within one 
frame then such a decision should be made within as few frames 
as possible. 

When a single partial signal is perfectly correlated (i.e. it 
contains no other components) its PDWD magnitude will be the 
square of the equivalent (same window function, step size etc.) 
DFT magnitude. Where the signal is not well correlated with 
itself in parts of the spectrum (i.e. it contains some noise as well) 
this relationship is not maintained. Thus we can compare the 
magnitude data from the PDWD with magnitude squared data 
from the STFT to determine whether an STFT component is 
likely to be a sinusoid or not. Figure 1 shows the magnitude 
correlation for PDWD and STFT analysis of a slowly amplitude 

modulated sinusoid. Figure 2 shows the correlation for a noise 
source filtered around 1 kHz to occupy a single DFT bin for a 
sample rate of 44.1 kHz and a frame size of 1024 samples. In 
Figure 1 it can be clearly seen that, for a sinusoidal component 
the PDWD magnitude is the square of the STFT magnitude. In 
figure 2 the relationship is much less clearly defined. This 
indiciates that we can test the relationship between the STFT and 
the PDWD magnitude for analysis bins containing spectral peaks 
to determine what signal component type might be present. 
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Figure 1: STFT against PDWD magnitudes for amplitude 
modulated sinusoid at 1 KHz. 
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Figure 2: STFT against PDWD magnitudes for narrowband 
filtered noise centered 1 KHz. 
 
There are few real world or synthetic signals which contain a 
single partial and any partial tracking algorithm should be able to 
cope with multi-partial (harmonic and non-harmonic) signals. 
Despite possessing a superior time resolution to the STFT the 
usefulness of the WD is severely limited by the cross term 
interference which is introduced in the kernel for all but single 
partial signals. For N components the number of cross terms 
generated is given by: 
 

( 1) / 2Cross Term TermN N N= −  (2) 

 
These terms are large in amplitude compared to the auto terms 
that have generated them and oscillate rapidly. For all but the 
simplest signals differentiation between contributions to bin 
magnitudes from auto and cross terms is very difficult. The WD 
for complex signals can also be negative within some bins. 
Certainly a direct comparison between PDWD and STFT 
magnitudes for a peak can no longer be relied upon as an 
indicator of the type of signal within that bin. 
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5. OSCILLATOR ITERATION WITH PDWD AND STFT 
MAGNITUDES 

 

5.1. Algorithm 

Since the WD satisfies the time marginal  (i.e. integration along 
its frequency axis yields the instantaneous power of the signal) 
we can still make useful comparisons between the PDWD and 
DFT magnitudes obtained. Although cross term interference 
makes a simple comparison between PDWD and DFT 
magnitudes unreliable other statistical analyses of the data both 
processes produce are more useful. A method for estimating the 
number of sinusoidal oscillators required for resynthesis of the 
deterministic part of the signal is presented below. This method 
uses the standard deviation of PDWD – DFT magnitude ratios as 
a ‘smoothed’ measure of the signal correlation within bins 
containing signal maxima.  

Analysis of how the ratio between the STFT magnitude 
squared and the PDWD varies for peaks in a signal has yielded a 
method for determining how many sinusoidal oscillators are 
required for resynthesising the deterministic part of a signal at a 
particular frame. Maxima in the DFT spectrum are identified and 
the ratio of the magnitude values produced by both analysis 
methods for these frequency bins is derived. The standard 
deviation of these ratios is then calculated. This process is 
repeated reducing the number of maxima searched for by 1 each 
time. When the optimum numer of deterministic maxima has 
been reached the standard deviation falls dramatically.  

5.2. Results 

Figure 3 shows the a test signal waveform consisting of a 
harmonic tone followed by white noise. Figure 4 shows how the 
standard deviation varies for this signal when 6 and 3 maxima 
are considered. Observing Figure 4 for the faded portions of the 
signal we see that the standard deviation is unaffected by signal 
level as expected. When the number of maxima considered falls 
below the optimum of oscillators the standard deviations 
obtained are similar to those for the optimum number. 

 
Figure 3: Waveform of test signal. The first portion consists of 
three harmonically related partials. The second portion is broad 
band noise. 
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Figure 4: Standard deviation of ratios of PDWD magnitude and 
STFT magnitude squared for 6 and 3 maxima. 
 
For sounds with harmonically related partials it is very likely that 
cross terms will coincide with actual partials. A similar signal to 
that in  Figure 3 was generated with non-harmonically related 
sinusoids and noise to examine the effect that such a signal 
would have the standard deviations present in its deterministic 
portion. Here the fall in standard deviation is more dramatic 
when the number of maxima reaches the optimum number of 
oscillators suggesting that this method might also indicate how 
close the deterministic part of a signal is to harmonicity. 

We have started to investigate the usefulness of this method 
for real world signals. Figure 5 shows the waveform of a 
recording of a male treble chorister singing the word “vox”. The 
deterministic and stochastic part of the utterance are shown. Trial 
and error, by fixing the number of oscillators and auditioning the 
result, suggests that the deterministic part of the sound is 
optimally reproduced with 2 oscillators and this is borne out by 
the data retrieved with our iterative method. Figure 6 shows the 
variation in standard deviation during this sound when 
evaluating for 2 and 6 maxima. Again, the stochastic part of the 
signal produces similar results for both plots. For all signal types 
it can be seen that the standard deviation fluctuates to a certain 
extent for both determinstic and stochastic portions. Currently we 
only sample the PDWD at the same rate as the STFT (1024 
samples with an overlap of 4). It is hoped that by sampling the 
PDWD at a greater rate will allow smoothing of the standard 
deviations obtained. 
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Figure 5: Waveform of recording of chorister singing the word 
“vox” 
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Figure 6:  Standard deviation of ratios of PDWD magnitude and 
STFT magnitude squared for 6 and 2 maxima. 

6. CONCLUSIONS 

The potential usefulness of combining the STFT and PDWD for 
the detection of sinusoidal signal components and estimation of 
their parameters has been presented. In particular we have 
demonstrated how, for various signal types, the optimum number 
of oscillators required for sinusoidal resynthesis can be 
determined using a simple process. Our work in implementing 
this as a real time process makes use of the highly optimised 
routines for the fast Fourier transform, auto correlation and 

various statistical analysis techniques which are offered by the 
Intel signal processing library[6]. We are currently investigating 
how the PDWD magnitudes might be smoothed by filtering or 
using some other cross term suppression technique to achieve 
greater consistency of standard deviation across frames so that 
this technique can be applied more reliably on a more localised 
(ideally frame by frame) basis. It is hoped that further 
investigation will yield more information on how this 
combination of analysis methods works. A partial tracking and 
oscillator system which uses the PDWD and STFT of current and 
acquired data to operate in real time is in development. This will 
form part of the AAS analysis and resynthesis engine. 
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