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ABSTRACT

This paper presents a piano transcription system that transforms
audio into MIDI format. Human knowledge and psychoacoustic
models are implemented in a blackboard architecture, which al-
lows the adding of knowledge with a top-down approach. The
analysis is adapted to the information acquired. This technique
is referred to as a prediction-driven approach, and it attempts to
simulate the adaptation and prediction process taking place in hu-
man auditory perception. In this paper we describe the implemen-
tation of Polyphonic Note Recognition using a Fuzzy Inference
System (FIS) as part of the Knowledge sources in a Blackboard
system. The performance of the transcription system shows how
polyphonic music transcription is still an unsolved problem, with
a success of 45% according to the Dixon formula. However if we
consider only the transcribed notes the success increases to 74%.
Moreover, the results obtained in the paper presented in [1], show
how the transcription can be used with success in a retrieval sys-
tem, encouraging the authors to develop this technique for more
accurate transcription results.

1. BACKGROUND

Systems for automatic transcription have been studied since 1975.
In the early years Moorer [2] implemented a system for the poly-
phonic transcription of music played by two monophonic instru-
ments. Limitations on the note range and the overlapping of the
two instruments were required in order to perform the task success-
fully. These limitations were tackled in future systems, adding fur-
ther knowledge in the transcription. Bregman’s publication opened
up to researchers a completely new field to investigate, and suit-
able architectures to implement psychoacoustic rules have been
employed effectively. Psychoacoustics and Artificial Intelligence
(Al) were merged to achieve a better understanding and solution
to music transcription and in general of Auditory Scene Analysis,
which became Computational Auditory Scene Analysis (CASA).
Blackboard systems [3] and Integrated Processing and Understand-
ing of Signals(IPUS) [4] along with Multi-Agent architectures [5]
are currently widely employed in the solution of musical problems.

2. FFT FRONT-END AND PSYCHOACOUSTIC MASKING

The front-end extracts from audio the basic features that will be
interpreted by the system to write the final score. Our front-end
uses a psychoacoustic model to select the ‘important” peaks in the
frequency domain representation given by the Fourier Transform.
The output of the front-end is a set of Spectal Peaks’ Amplitude
and Frequency parameters.

2.1. Power Spectrum

The audio samples are normalised at the beginning of the analysis
to have 1 as the maximum absolute amplitude value. This signal,
x(n), is re-sampled after anti-aliasing filtering at 11025 Hz and an
FFT of 2048 points (185 msec) is calculated leading to a frequency
resolution of circa 5.4 Hz in the spectrum. The hop size between
two consecutive frames is of 256 samples (23.2 msec) to improve
the time resolution, compromised by the choice of large windows.
The coefficients are multiplied by a normalisation coefficient equal
to 2/N, where N is the FFT length in samples. The power spectra
distrubution P(k) is obtained using the following formula:
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where the power normalisation term, PN, is fixed at 90 dB and
the Hann window, w(n), is defined as:

1 2n
w(n) = 3 [1 - COS(T):| (2)
The choice of PN leads to a Sound Pressure Level SPL of 84 dB,
when analysing a full-scale sinusoid. The SPL is low-bounded at
-15 dB for very low amplitude input tones.

2.2. Global Masking Threshold

As part of every front-end there is a peak picking algorithm, which
selects the most important information to process in one frame of
the signal. Simple thresholding has been widely used in common
peak-picking. Although, this approach is not optimal because of
the human non linear perception of loudness at different frequen-
cies. For this porpose, psychoacoustic experiments led to the study
of models for a psychoacoustic weighting of the signals. In this
way, the signal components in the frequency domain assume im-
portance according to their psychoacoustic relevance. In our work,
the 1ISO MPEG-1 [6] psychoacoustic model of masking has been
extended to work with large time windows. Some simplifications
of the algorithm were also necessary for computational efficiency.
The absolute threshold of hearing is characterised by the amount
of energy needed in a pure tone such that it can be detected by
a listener in a noiseless environment. The frequency dependence
of this threshold was quantified in 1940, when Fletcher reported
test results for a range of listeners which were generated in a study
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of typical American hearing acuity. The quiet threshold is well
approximated by the non-linear function of equation 3 which is
representative of a young listener with acute hearing.

T,(f) = 3.64(f/1000)"*® —
76.5670.6(1‘/1000—3.3)2 +

+1073(£/1000)* (dB SPL) 3)

When one sound is rendered inaudible because of the presence of
another sound, masking occurs. Simultaneous masking refers to
a frequency-domain phenomenon which has been observed within
critical bands. In this domain we distinguish two types of simul-
taneous masking, namely tone-masking-noise and noise-masking-
tone. Masking also occurs in the time-domain. Sharp signal tran-
sients create pre- and post- masking regions in time during which
a listener will not perceive signals beneath the elevated audibil-
ity thresholds produced by a masker. We decided to calculate the
masking threshold considering all the maskers as tones-masking-
noise, and we didn’t take into account time-masking. This is due to
the fact that our model is principally oriented to the signal’s tonal
analysis in its stationarity.

Since masking refers to a psychoacoustic phenomenon, the mask-
ing threshold will be calculated in the Bark domain. The Bark
scale, in fact, refers to the critical bands of hearing. The conver-
sion from frequency to bark is given by equation 4 and its function
can be approximated by a logarithmic function.

Bark(f) = 13 arctan(0.00076f) + 3.5 arctan((f/7500)2)
4
From the PSD of equation 2 we detect all the local maxima, then
we replace any two maxima in a 0.5 Bark sliding window by the
stronger of the two. Once the Maskers are calculated, a decimation
process takes place before calculating the global masking thresh-
old according to the following scheme:

1 <=k <=nFFT/8

44k — (kmod32) k> nFFT/8 ®)

i { 4+ k — (kmod8)

where k is the FFT index and ¢ the decimation index. Dec-
imation increases with frequency, because the critical bandwidth
increases and the accuracy requirement is less demanding. The
effect of the decimation scheme above is to reduce the number
of bins for the calculation of the global masking threshold, with-
out loss of maskers. In fact, using long FFT frames, i.e. 2048 at
11025Hz the computational load becomes heavy and data decima-
tion halves the processing time. The maskers are then relocated
according to the decimation scheme.
Having obtained a decimated set of maskers, each threshold repre-
sents a masking contribution at frequency bin ¢ due to the masker.
The Tonal Masker Thresholds, according to the ISO MPEG-1,
Trum(i,7), are given by

Trm(i,7) = Pram(5)—0.2752(5)+SF (i, j)—6.025 (dB SPL)

(6)
where Prjz(7) denotes the SPL of the tonal masker in frequency
bin j, z(j) denotes the Bark frequency of bin j, and the spread of
masking from masker bin j to maskee bin i, SF(¢, j), is modeled
by equation 7. SF'(4, j) is a piecewise linear function of masker,
Pr(7), and Bark maskee-masker separation, A, = z(4) — z(j).
SF(i,7) approximates the basilar spreading of the masking thresh-
old given a certain excitation.

SFE(i,j) = 7
17AZ—O.4PTA{(j)—|—11 —S_Az < -1
—17A, -1<A, <0
(0.4PT]\{(j) + G)AZ 0<A. <1
(0.15PTJW(j) — 17)Az — 0.15PTM(]') 1<A, <9

(dB SPL)
Once the individual masker function are obtained, the global thresh-
old is calculated by combining them for each frequency bin. The
model assumes that masking effects are additive. The global mask-
ing threshold, T, (4) is therefore obtained by computing the sum

L
Ty(i) = 10log, (1074 @ + 3~ 1001 rM D)y (dBSPL)

j=1

®)
where T, (%) is the absolute threshold of hearing for frequency bin
1, and Tras (4, ) are the individual masking thresholds modelled
as tonal, with L the number of maskers. In other words, the global
threshold for each frequency bin represents a signal-dependent,
power additive modification of the absolute threshold due to the
basilar spread of all maskers in the signal power spectrum.

Figure 1: Masking level and peak picking in the spectrum.
x axis:frequency(Hz), y axis: SPL (dB)

2.3. Peaks, Instantaneous Frequenciesand Amplitudes

The frequency resolution of the FFT can be calculated by:
Fs
lution = — 9
resolution = — 9)

where F's is the sampling frequency and N the FFT frame size.
In polyphonic music we need to isolate the spectral components
of different signals. If we consider two notes, whose fundamental
frequencies are 50 Hz apart, we need a resolution that will allow
us to have at least one point between the two frequencies, yield-
ing to a resolution better than 25 Hz choosing N = 2048. We
decided to sacrifice time resolution for good note separation in the
frequency domain. After this premise, every peak in the spectrum
will be an approximated value of the real frequency. The incer-
tainity is equivalent to the resolution. Sometimes, for low notes,
this resolution is not enough to determine the exact pitch with the
fundamental frequency. Using the phase unwrapping method from
the phase vocoder technique we calculate the istantaneous spectral
frequency for each spectral peak.
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2.3.1. Phase unwraping

In order to find the istantaneous frequency, we interpolate the phases
of the peak bins in two consecutive frames. The FFT outputs fre-
quencies are quantised to the centre frequency of the filterbank
channels. If we consider the FFT bin & of one peak selected in the
spectrum, we calculate the phase difference:

A¢ = Pi(tnt1) — ¢i(tn) + 2mm = Atw;(tn) + 2mm  (10)

where w;(,,) is the instantaneous frequency remained constant over
the duration At = (¢n+1—tn), which is equal to the hop size. The
term 2mm comes from the fact that only the principal determina-
tion of the phase is known. Parameter m is calculated by solving
the following inequity:

|Ap — QpAt — 2mr| < 7 (11)

and there is only one integer m that satisfies inequity of equa-
tion 11. Once m is determined by adding or subtracting multiples
of 27 until the preceding inequality is satisfied, this is the process
of phase unwrapping [7], the instantaneous frequency can be ob-
tained as follow:

wiltn) = O + Ait(m WAt —2mr)  (12)

Since we calculate the FFT using Han window, once the instanta-
neous frequency is calculated, the instantaneous amplitude is also
calculated.

2.3.2. Amplitude Value Correction

In order to have precise values for both frequencies and ampli-
tudes, we unwrapped the phases of each frequency bin of the FFT
to find the istantaneous frequency. Once we have found the istanta-
neous frequency, we can calculate the correction for the amplitude
value corresponding to a certain bin. The FFT spectrum is the con-
volution of the signal spectrum with the Hann window spectrum.
The plot of the Hann main lobe is portrayed in figure 2. Knowing
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Figure 2: a) Hann main lobe b) Zoom of Hann main lobe: the value
of the amplitude’s correction is found from the frequency deviation
in bins

the shape of the Hann main lobe and the istantaneous frequency,
it is possible to correct the amplitude value given by the FFT. We
calculate the frequency deviation as a fraction of a bin with the
following equation:

fist — fbin

df

deviation =

(13)

where fis: = % is the instantaneous frequency, fuin the fre-
quency corresponding to the FFT bin, and df is the frequency res-
olution given by equation 9. The frequency deviation value is in
the range [0,0.5]. The instantaneous Amplitude value is given by
calculating:

Aist = Apin + Hann(0) — Hann(deviation)  (14)

where A;s: and Ay, are the istantaneous and bin amplitude value;
Hann(0) and Hann(deviation) are the Hann window spectral
amplitude values at the centre of the bin and corresponding to the
frequency deviation.

At this point the set of spectral peaks instantaneous amplitudes and
frequencies are passed to the blackboard system for the calculation
of the score.

3. BLACKBOARD MODEL

This metaphor has been used to describe the work of experts trying
to solve a problem in front of a physical blackboard. The original
data is written on the blackboard. Then each expert contributes
according to his knowledge and hypotheses are produced for the
possible solution. All the information and hypotheses are written
on the blackboard. The experts are represented by the Knowledge
Sources (KSs), which operate to modify the blackboard data until
a signal explanation is found. The hypotheses, which have good
support in all KSs, are then confirmed as the final interpretation.
The blackboard architecture also needs a Scheduler, which is the
control unit. The scheduler decides which of the KSs must operate
relying on the information written on the blackboard. Figure 3
illustrates the Blackboard system implemented in this paper.

3.1. Blackboard Data Abstraction

The Blackboard workspace is arranged in a hierarchy of data ab-
straction levels. The first level is represented by the Spectrogram
Buffer, which stores two seconds of the most recent spectra. The
Spectral Peaks represent the basic information to build the Black-
board objects. Harmonicaly related Spectral Peaks are grouped
into Note Candidates. If a Note Candidate receives a good rat-
ing, it is transformed in a Note Hypothesis. Then the hypotheses
that last for a minimum activation time become Active Notes. The
Blackboard Data space is available to any active KS and represents
the state of the system.

3.2. Scheduler and KSs

The Scheduler decides which KS has to be activated, depending
on the state of he Blackboard. We grouped the front-end with the
other KSs to fit the model. The front-end is called by the Scheduler
at the beginning of each new frame and provides the FFTs coeffi-
cients, stored in the circular Spectrogram Buffer, and the Spectral
Peaks. Figure 4 illustrates the processing stages imposed by the
Scheduler, that we are going to describe in the next sections.

3.2.1. Active Notes Streaming

After the Spectral Peaks are produced by the front-end, the sched-
uler looks in the Blackboard for Active Notes. The Active Notes
receive particular attention by the system, because they come from
Hypotheses that were confirmed a number of times and therefore
‘to be trusted’. Often in polyphony the Notes are played, whilst
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Figure 3: Blackboard system

other keep ringing. A frame by frame multi-pitch tracker will give
different results depending on the relative energy of the Notes.
We want to exploit the beginning part, where the note intensity
and pitch are detectable in a mixture of sounds. Then, we fol-
low the note ringing, by assuming its continuation. This con-
cept of ‘streaming’ is implemented in the ActiveNoteContinua-
tion_KS. This KS checks if the Active Note fundamental frequency
is among the Spectral Peaks. In that case extract from the Spectral
Peaks all the frequency and amplitude belonging to the harmonic
support of the Active Note and prevents them to generate new Note
Candidates. After all the Active Notes have been processed for
continuation, the scheduler calls the OctaveNote_KS.

3.2.2. Octave Note Detection

By Octave Notes we mean all the Notes, whose fundamental fre-
quency corresponds to a multiple of another Note’s fundamental,
even if the interval is not strictly of an octave. This means that
the two spectra are ideally (not considering inharmonicity) com-
pletely overlapped. If fo = nf; then each partial of f> overlaps
every n'" partial of f1. In our system we don’t detect any Octave
Notes that are played simultaneously. This assumption is made
due to the fact that this kind of octave detection must rely on in-
strument tone modeling. Rather, we preferred to detect Octave
Notes played with a different onset time, but still overlapping in
frequency, which are also easier to distinguish for humans than the
synchronous case. The OctaveNote_KS analyses the Active Notes
partial’s amplitudes. When the partial’s amplitude exceeds a given
threshold a new Note Candidate is written on the blackboard. From
the analysis of the Active Notes, many partials may increase in
amplitude, caused by the playing of another note. In this case, we
eliminate all the Candidates whose frequency is multiple of other
Candidates. The partial’s onset threshold is increasing with fre-
quency, because at the high frequency the signal is very noisy and
there are good chances to make errors. This KS also is responsable
for the detection of repeated Notes. An adaptive thresholding is
implemented, in this case. The maximum amplitude of the Active
Note’s fundamental is stored in the Blackboard and a proportional
threshold about (80/90%) is set. When the fundamental’s ampli-

Audio
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Figure 4: Processing flow implemented in the Scheduler

tude crosses that threshold again a new Note Candidate is written
on the blackboard.

3.2.3. Note Activation/Offset Note

The Fuzzy Inference System [8], that will be described in sec-
tion 3.3, creates and update the Hypothesis on the Blackboard.
The Note Activation/Offset Note KS looks at the Hypothesis in
the Blackboard and transform them into Active Notes. A Note
Hypothesis becomes an Active Note, when it lasts for a minimum
activation time (80 msec). When a Note is activated, the correct
onset time is found looking in the Spectrogram Buffer for the most
recent rise in the fundamental’s amplitude. The Note Hypotheses
that have similar onset time are checked for Octaves and eventu-
ally deleted from the Blackboard. This KS deletes also from the
Blackboard the Active Note or Hypothesis that weren’t confirmed
in the last frames, after writing the Active Notes on the final score
with their pitch, onset and duration.

3.3. Fuzzy Inference System KS

The Fuzzy Inference System (FIS) KS take the Spectral Peaks that
weren’t selected in the Note Continuation process and creates new
Candidates. The algorithm chooses the lowest frequency and build
a vector of the partials amplitudes and frequencies collected from
the Spectral Peaks. The new Candidate is evaluated by the FIS to
become a Note Hypothesis. If the Candidates fails the fundamen-
tal frequency is deleted from the Spectral Peaks, while the partials
are returned for the choice of the next Candidate’s fundamental. If
the Candidates becomes a Note Hypothesis all the partials are ex-
cluded from being possible fundamentals, still they can contribute
to other notes rating. With this statement we avoid penalising notes
that share many partials(like a note with its fifth).

To rate a Note Candidate the inference system analyses a set of 3
features, x1, x2, x3, extracted from the Note Candidate’s vector.

e 1z, is the fundamental of the note.
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Figure 5: a) n; as a function of the partial number b) ¢; calculated
as the intersection point between the frequency detected and the
triangole of one semitone centered on the ideal multiple of f

e x5 is the harmonic rate

e x3 is the difference between the maximum peak in the spec-
trum and the Candidate fundamental’s energy

3.3.1. Feature 1: Fundamental Frequency

This feature is the pitch of the Note under analysis and indicates
if we are analysing a low, middle or high Note. Depending on
this quantity we expect different characteristics in the note’s spec-
trum. We chose the boundaries between low and middle and high
notes at around 180 and 700 Hz. This can be visualised from the
membership functions in the first column of figure 6.

3.3.2. Feature 2: Harmonic Rate

The Harmonic Rate is given by the equation15:

N
A(f) = _Z timi (15)

where n; rates the presence of the ith partial. n; decreases from
1 = 1, the fundamental, to the highest partial as shown in figure 5
a). The presence of peaks at or near multiples of f increases the
harmonic rate A(f) in a way which depends also on the peak’s
frequency position. ¢; depends on how closely the ith peak is tuned
to a multiple of f and is calculated by equation 16:

t; = abs(fi — pi)/pi % 0.03 (16)

where p; is the ideal partial position, p; x 0.03 is the approxima-
tion of a semitone interval and f; the nearest peak to p; inside the
semitone window. The value of ¢; is between 0 and 1 as can be
seen from figure 5 b). n; depends on whether the peak is closest
to a low or high multiple of f. The coefficient n; expresses the
importance of the partial in determining the final likelihood and is
given by the heuristic function [9]:

05 =1
”i:{ 00 2N (an

1—0.1

It can be noticed that the value given at the fundamental posi-
tion is very similar to the value given at the first harmonic. This
heuristic rating has proved effective when the fundamental was
missing. Typical values for A(f) are around 2 for Low Notes, 1.5
for Middle Notes, and 0.7 for High Notes. This is taken into ac-
count when building the membership functions in coloumn two of
figure 6. A(f) increases with the quantity of partials found in the

1) piten b= x2) harmenic rate x3) Eneray difference a5

Figure 6: Membership functions: columns refer to pitch, harmonic
rate, relative energy (starting from left). row refer to Low, Middle,
High Notes (starting from top)

spectrum and doesn’t depend on the partial’s amplitude. We de-
sired this assumption in order to have a parameter not depending
on a particular timbre or instrument.

3.3.3. Feature 3: Fundamental’s Relative Energy

This feature is calculated as the difference between Spectral Peaks
maximum and the Fundamental’s Energy. In the FIS the relative
energy is determinant for High pitched notes, which require a high
energy at the fundamental to receive a good rate and become Note
Hypothesis. This feature becomes gradually less important as the
pitch decreases, until considering the extreme case of the com-
pletely missing fundamental. In this case the Energy of the fun-
damental, which cannot be calculated from the spectral peaks, is
chosen from the original spectrum. The membership function in
column three of figure 6 shows the Energy rating for Low, Middle
and High Notes.

3.3.4. Linguistic Decision Logic

The FIS rates each feature according to the membership functions
shown in figure 6. From the top each row refers to the membership
functions for Low, Middle and High Notes. Each feature is passed
to the membership functions in the correspondent column to out-
put a rate between 0 and 1. The total rate for each row is calculated
choosing the minimum rate across that row. The ‘min’ operator, is
a quantitative implementation of the logical ‘and’. The output rate
is not exploited in this first implementation, but only thresholded
to give a yes/no response. The Linguistic rules implemented in the
system decide if a group of partial is a good candidate. We distin-
guish tree kind of notes: for Low-Notes Candidates we expect high
harmonic support(many partials) ‘and’ medium-high energy in the
fundamental; for High-Note Candidates, we require a high Energy
value of the fundamental with respect to the other spectral peaks
‘and” we expect low harmonic rate; for Mid-Note Candidates we
interpolate the two criteria. Therefore, we designed the sigmoid
membership functions taking into account the average values for
each feature in every category of Notes.

4. RESULTS

The polyphonic system has been tested with 14 piano pieces by
several composers. The audio files were recorded at the LMA in
Marseille, using a Disclavier Yamaha MIDI controller for a Con-
servatory C6 Yamaha Grand Piano. The original MIDI files were
downloaded from various internet websites. Music was from com-
posers such Beethoven, Debussy, Joplin, Mozart, Rachmaninoff,
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Ravel and Scarlatti. We used a Macintosh G4 computer with 256
Mbyte of RAM and 40 Gbyte of Hard Disk, running the Pro Tools
LE software on Mac OS 9.1. The audio and MIDI interface was
a Digidesign DIGI-001 system, which provided the MIDI output
for the Disclavier and the audio inputs for the two AKG-C1000S
condenser microphones. The recording quality was set to stereo
CD quality (16 bit at 44100 Hz). The Matlab code runs on mono
recordings at 11025 Hz of sampling rate. For the conversion of the
audio files we used the re-sample function with anti-aliasing filter
in Sound Forge audio editor, running on a PC.

Figure7 shows the performance of the transcription algorithm. The
parameters plotted are:

N Notes: number of original notes inside the window repre-
sents the polyphony

Nt Note transcribed: number of correctly transcribed notes

FP False Positive: number of transcribed notes that weren’t
played in the original MIDI

FN False Negative: number of not transcribed notes

OctP Octave Positive: Number of FP notes that are one octave
above a note in the original MIDI

OctN Octave Negative: Number of FN notes which fundamental
is a multiple of an other note in the transcribed score

Then, we evaluate the performance using the Dixon formula [10]
in equation 18.

Nt
Percl = 100 x m (18)

With this formula the detection success is 45%. Although the
result might seem poor, which is not considering the polyphonic
problem and the complexity of the original files, we can calculate
the value of the ratio of correctly detected note against the total
transcribed i.e.:

Nt

Perc2 = 100 * N+ FP (19)

In this case the detection rate rises at 74%. An application, em-
phasising the importance of the results in this paper, is the Mu-
sic Information Retrieval system implemented in [1]. For the first
time, a system that retrieved polyphonic scores from polyphonic
audio queries has been realised successfully. The audio queries
were converted in score format and searched in a 3000 music score
database. The testing has been performed on the trascriptions of
the 48 Bach’s Fugues and Preludes. The system reported and av-
erage ranking of a little over 3 for the Bach’s Prelude and a little
over 2 for the Bach’s Fugues, where random ranking would place
the known item on average 1.500%". The success of the system
can be attributed to the high rate of good detection rate calculated
in equation 19. The correctness of the transcribed notes has been
proven to be sufficiently accurate for the harmonic modeling im-
plemented in the that system.
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