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ABSTRACT

This paper describes the prototype of a system for recognition of
hummed tunes. The prototype takes as input an unknown
hummed tune, turns it into segments representing the distinct
notes of the tune, detects the pitch of the segments and turns them
into a simple note-like symbolic representation to be matched
against a reference database of known tunes. The system returns a
list of tunes sorted according to similarity to the hummed tune.
Each entry in the list contains information like title, composer,
author, and a link to a midi-file enabling the user to ensure
himself that the he is reading the data of the song that he has
hummed.

Testing with seven persons humming 46 songs in total, has
shown a successful recognition rate of 75.6% with a search space
of 39925 songs.

1. INTRODUCTION

The system described in this paper can be considered an
electronic counterpart to encyclopedic books like the classical “A
Dictionary of Musical Themes” by Barlow & Morgenstein [1] or
"The Directory of Tunes and musical Themes" by Denys Parsons
[2] allowing users to look up musical themes via note-like textual
representations. However, rather than providing the user with
actual information about a huge number of musical themes, the
system is concerned with the exploration of core technologies
involved when the textual representation is replaced by a
hummed sound signal: Segmentation, pitch extraction, encoding,
and pattern matching. Consequently, the database only contains a
small number of “real” musical themes (songs) whereas the rest
has been randomly generated to simulate a large search space.

A fully functional prototype has been established. However,
the prototype has the following limitations:

(1) The user has to hum “baba” to ease segmentation
(which utilizes the closure phase of ‘b’).

(2) He/she must hum the entire tune (an entire stanza
of a song)

(3) The pattern matching algorithm has not yet been
optimized for speed.

An experimental version has been developed not requiring the
input signal to match an entire reference pattern (allowing the
user just to hum “the beginning” of a tune).

2. PROTOTYPE

On the face of it, the problem of recognizing a hummed tune can
be viewed as a matter of extracting the pitch contour of the tune
and compare it to the contours of a set of known tunes using
pattern matching algorithms such as Dynamic Time Warping.
However, for a number of reasons this solution is not considered
optimal for the application being discussed. The problem of
maintaining and enlarging the reference database (i.e. the set of
known tunes) is very time-consuming if each tune has to be
hummed (perhaps even by a number of representative singers),
recorded, and converted to pitch contours. Further, the system
may become very sensitive to variations caused by a user not
humming perfectly in tune or humming very slowly or very fast.
And finally, the direct comparison of pitch contours requires an
extremely powerful computer, especially if the reference database
is large.

If the pitch contour can be represented in another, more
simple way, it will reduce the time used for pattern matching.
This can be accomplished by using an encoder to transform the
pitch contours into a format conforming to the notes found in a
traditional music score or even simpler: the length (value) of each
note may be disregarded so that the format only captures the
sequence of note qualities in the tune. This simplified note format
is in fact used for textual lookup in the dictionary by Barlow &
Morgenstein [1] mentioned above. Further simplifications are
found in music dictionaries like Parsons' book [2] (known as the
"up-down book"!) where the pitch quality of each note is stated
relatively to the previous one as “up” or “down” or “same”. This
latter dictionary addresses ordinary users, whereas the first one
presupposes some knowledge in music theory (music reading,
transposing themes etc.).

An encoding scheme transforming the pitch contours into
sequences of “symbols” solves the problems mentioned above,
however introduces a new one: information omitted in the
simplifying scheme may be non-redundant causing two or more
different tunes to be assigned the same sequence of note-like
symbols. However, so far this problem is considered to be of
merely theoretical nature. The two dictionaries mentioned above
document that the simplified scheme works in practice. Further,
as the system employs an n-best pattern matching algorithm
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(similar to Web search engines like Google or AltaVista) the user
will hardly ever experience the problem as a limitation.

2.1. Architecture

The architecture of the prototype is shown in Figure 1 below.

Figure 1. Architecture of prototype

The sound signal is segmented into notes each of which is
assigned a pitch value used for the encoding into a symbol. The
sequence of symbols is matched against a reference database
resulting in a scored n-best list.

2.1.1. Segmentation

Segmentation into notes is based on a dynamically calculated
threshold applied to the smoothed amplitude contour of the
signal. As shown in Figure 2 the segmentation removes the less
sonorous (unvoiced) parts of the signal (the closure-phase of 'b'
and pauses) passing only voiced segments ('a's) on to the pitch
detection1:

The segmentation scheme works well and only produces few
insertions and deletions provided that the Signal to Noise Ratio is
sufficiently high and the user hums on “ba” as instructed by the
system. In fact, informal tests give evidence that users can hum
on any plosive (b,d,g,p,t,k) followed by any vowel, whereas
humming on a sonorous consonant+vowel ("lala") or especially
singing the actual words of the tune result in a decreasing
performance.

Alternative segmentation methods based on the pitch
contours (i.e. applied after pitch detection) allowing a more free
humming mode have been considered. The major drawback of
these alternatives is their inability to segment many repetitions of
the same note (e.g. as found in the refrain of "Jingle Bells"). In
such cases, segmentation based on the amplitude contour is
unavoidable.

1 Note that the sound 'b' like 'd' and 'g' are unvoiced in Danish
whereas their English counterparts are voiced. The system
reported in this paper may be fine-tuned for Danish users, though
we doubt that it would perform significantly worse if tested on
English ones.

Figure 2. Segmentation module: (a) waveform, (b) smoothed
amplitude contour, (c) detected notes (colored areas)

2.1.2. Pitch detection

A number of pitch detection algorithms have been explored
including both time domain based algorithms (zero crossing,
autocorrelation, and the average magnitude difference function)
and frequency domain methods (Fourier transform, harmonic
product spectrum, power spectrum). In the literature, the various
methods are discussed mainly in the context of speech processing
and the problem of extracting so-called intonation contours [3]
[4]. However, many problems encountered in speech like
lanryngelazation ("creaky voice") hardly ever occur in hummed
sound signals and we have not observed the typical
halving/doubling errors in the pitch detection module utilized in
the present system. We ascribe this to the following reasons:

(1) Most intonation classification systems operates with only
two states of the glottis, voiced (regular vibrations of the
vocal folds) and unvoiced (no vibrations) whereas real
speech has at least a third state: irregular vibrations of the
vocal folds. We feel that this third state which causes many
problems experienced by pitch-extraction algorithms is rare
in normal hummed signals2.

(2) In the present system, the segmentation module (sec. 2.1.1)
replaces the voice detector of an intonation classification
module. However, whereas it is critical if a voice detector
disregards too much of the signal, the segmentation module
has been optimized for only passing cleanly voiced segments
on to the pitch detection. Hence, we do not encounter the
problems found in the transitions between voiced and
unvoiced segments.

2 Danish has a glottal stop ("stød") mostly realized as irregular
vibrations of the vocal folds (as in "she eats" spoken fluently and
yet opposed to "sheets"). It is well known that this prosodic
feature cannot be pronounced when singing and that good song
texts avoid words with "stød". For further discussion, see [5].
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As we don't think the choice of pitch detection algorithm is very
critical in the system described, we have chosen a standard
approach based on autocorrelation. The autocorrelation of a block
of sampled data is calculated as

where Rk is the correlation function for the kth lag, N is the
number of data points in the block and Si is the ith point (cf. [6]).

2.1.3. Encoding

The prototype of the system utilizes the simple DUR-
representation found in books like [2], i.e. each segment (note) is
classified as either D (down), U (up), R (repeated) denoting
whether its pitch quality is lower, higher or the same as the
previous one, see Figure 3C. The threshold is set to a semitone.

Figure 3: "Brother John" in the notation of (A) a traditional
score, (B) textual notes in the style of [1], (C) simplified contour
symbols in the style of [2], and (D) simplified contour symbols

enriched with simplified duration symbols.

An alternative representation taking more precise intervals
into account has been considered: unison, minor/major second up
or down, minor/major third up or down etc. Such intervals can be
derived automatically from the Barlow & Morgenstern style of
representation (Figure 3B). However, so far experiments have
only been conducted with simple enrichment of the DUR-
representation with duration information. The experimental
version being developed also classifies the value (length) of the
notes using the simple scheme: L (longer), S (shorter), R
(repeated value), cf. the notation style of Figure 3D.

The crucial question when modifying the encoding and
representation scheme is, of course, how to modify the local cost
function of the matching routine (see below).

2.1.4. Matching

The matching module compares the DUR representation
generated by the encoder to the DUR representations of known
songs in the reference database using a Dynamic Programming
(DP) algorithm. The DP scheme is very similar to Minimal Edit
Distance algorithms or the Dynamic Time Warping (DTW)
algorithms typically used in speaker dependent speech
recognition [7] [8] [9]. The encoded representation is considered

a "noisy" version of a reference pattern and the module finds the
n-best matches with the lowest distance paths aligning the input
pattern to the reference templates. The results are presented to the
user in the form of a scored list of song titles. Each title has a link
to a midi-file allowing the user to check if the correct tune has
been found.

The DP algorithm operates on the DUR representation passed
on by the encoder and, in turn, each of the DUR template patterns
found in the database. A local cost matrix is computed calculating
the distance between each symbol of the encoding vector and
each symbol in the reference vector. The global path-cost
calculation is based on equation (2):

stating that the global cost of a given node DA(i,j) in the matrix is
equal to the minimum of the global cost at the previous node
DA(i',j') plus the cost of moving from that node d((i',j'),(i,j)). The
function d is defined as the local cost of the current node (dN)
times the cost of the transition (dT) i.e. dN(i; j) × dT ((i'; j'),(i; j)),
where the dT function denotes the best of three transitions as
shown in Figure 4.

Figure 4: Path-cost for different transitions

The three transitions conform to the insertion, substitution, and
deletion operations of a Minimal Edit Distance algorithm.

The algorithm can easily be modified to allow the test pattern
just to match "the beginning" of a reference pattern. Assuming
that users may typically stop at specific notes in a tune, e.g. after
a bar in the notation of a traditional score (but not within a bar),
we would simply have to extend the notation of template patterns
with markers at possible end notes (e.g. at note 4, 8, 11, 14 etc. in
Figure 3). However, matching against small pattern fragments
obviously magnifies the problem of ambiguity addressed in the
section 2. This approach presupposes a more detailed notation
style than the DUR-representation used in the prototype (e.g.
styles conforming to Figure 3B or 3D).

Experiments have been conducted with the local cost function
(comparable to the Euclidean distance calculation in standard
DTW speech recognition) assuming that the D/U cost should be
higher than D/R and U/R; however, the test results reported
below are produced by the prototype that only examines if the
two symbols being compared are equal or not.

Likewise, preliminary experiments with enriched notation
styles conforming to Figure 3B and 3D have been conducted. The
number of semitones dividing two intervals is the obvious local

(A)

(B) cdeccdecefgefggagfecgagfeccGccGc

(C) *UUDRUUDUUUDUURUDDDDUUDDDDRDURDU

(D) *UUDRUUDUUUDUURUDDDDUUDDDDRDURDU
*RRRRRRRRRLSRLSRRRLRSRRRLRRRLSRL

(1)

(2)
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cost measure in case of 3B. In case of 3D, local cost functions for
duration and melodic contours can be weighted.

Figure 5: User Interface of prototype with an n-best list in the
lower frame and the data of the selected song in the upper frame.

3. TEST AND EVALUATION

The prototype has been implemented and tested using a database
of 46 songs hummed on “ba” by 4 female and 3 male test
persons. The part of the database used during the implementation
and tuning of the system has been kept apart from the data used
for testing. The reference database consists of 25 DUR
representations of real songs supplemented by a number of
pseudo songs generated by a random function. The generated
songs are all between 10 and 40 symbols long (like the 25 real
songs). The 25 DUR representations of real tunes have been
derived semi-automatically from available midi-files3. The
prototype has a successful recognition rate of 75.6% with a
search space of 39925 songs when the presence of the correct
tune under the top-5 candidates is scored as a correct recognition.

Informal tests indicate that users can easily adjust themselves
to the system and hum very distinct notes. If the test persons had
been instructed to hum very distinct “ba”s forgetting their

3 Note that it is far from trivial to derive melodic templates
from multi-tracked midi-files automatically. However, as
far as this is possible the methods discussed in the present
paper can also be viewed as core technologies of a general,
web-based midi-file finder.

“musical appreciation”, the recognition rate would undoubtedly
have been significantly better.

4. CONCLUSION

The most obvious components of the system to improve are: (1)
The encoding (including classification of node intervals in the
symbolic representation) and (2) the pattern matching
(modification of the local cost function; modifications of the DP
allowing users just to hum “the beginning” of a tune,
optimization for speed). These improvements are taken into
account in a new version being designed.

The user interface of the prototype is minimalistic (Figure 5)
centered round the microphone input. Users may experience it a
limitation that they have to adapt to the system and hum distinct
"ba"s. However, this limitation is compensated for by the
simplicity, reliability, and robustness of the system.
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