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ABSTRACT 

In this work we present an extension of the classic schema 
of a time-varying filter excited with white noise for the 
modeling of noise signals from musical instrument sounds. 
The framework used is that of statistical signal processing, 
and a structure that combines an Autoregressive (AR) 
model with an adaptive FIR filter is proposed. A comb-
based structure for the AR filter is used when tuned noise 
is to be modeled. The analysis/resynthesis schema 
proposed is used to perform some basic sound 
transformations such as time stretching, tuning  and 
energy envelop control, and spectral processing.   

1. INTRODUCTION 

In the field of speech and sound modeling, it is common 
practice to decompose the sounds in the sum of two 
components: the sinusoidal or harmonic one and the 
residual or stochastic one. In this way, it is possible to use 
different synthesis techniques for the two parts, e.g. it is 
possible to use frequency-domain techniques to represent 
and control the deterministic part, and time-domain 
techniques to represent and control the stochastic part [1].  
 
The problem of the encoding and transformation of the 
deterministic part of sounds in term of time-varying 
sinusoids has been deeply explored. A set of robust 
techniques is today available to perform high quality low-
level sound transformations, such as time-stretching and 
pitch shifting, as well as high-level sound transformations, 
such as control of expressiveness in digitally recorded 
musical performances. On the other hand, there is a lack of 
models for noisy sound transformations, such as the ones 
mentioned, in a time-frequency analysis/synthesis 
framework. A common approach is to use a noise- or 
pulse-driven source filter model for the analysis and 
synthesis of stochastic components [1],[2]. However, this 
model generally does not work well due to the loss of  
synchronization between the sinusoidal and stochastic part. 
Another recent approach proposes to represent a single 

component of the sinusoidal decomposition by partials 
with noise-enhanced bandwidth [3]. This representation 
allows  
for effective and compact sound manipulations, but still 
has the limitations of a frame-based analysis-synthesis 
approach for the modeling of fast transients. 
Our research aims at extending the classic schema of a 
time-varying filter excited with white noise, by organizing 
an ARMA filter in two parts, having different 
functionalities: the MA part is responsible for the 
modeling of rapidly time-varying transients, while the AR 
part is responsible for the stationary or slowly changing  
spectral characteristics.  
Having these two components separated and modeled by 
two different filters gives better control in terms of the 
sound parameters, so that time-scale transformations can 
be done by changing the rate in the temporal sequence of 
the MA coefficient, while pitch related or spectral related 
transformations can be done by changing the coefficients 
of the AR part. When opportune, a comb AR filter is used 
to model the emphasis, in the noise spectrum, of frequency 
regions related to the harmonics of the deterministic part. 
 

2. ANALYSIS AND SYNTHESIS FRAMEWORK 

The theoretic framework we used is that of statistical 
signal processing [4]. In detail, the recursive least mean 
squares (RLMS) algorithm is used to identify the time-
varying MA filter. The RLMS algorithm is is an adaptive 
algorithm based on the computation of the estimate error, 
e(k)=d(k)-y(k), where d(k) and y(k) are respectively the 
desired and the actual output signal, and on the adaptation 
of the coefficients of the filter c(k) according to the 
formula: 
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x(k) is the input signal, and µ is an opportune constant. 
It has been observed that RLMS algorithm offers good 
performance for the transients and rapidly time-varying 
parts of the desired signal.  
Conversely, to model the slowly-varying part of the signal, 
a linear prediction (LP) analysis based on the correlation 
method, is used to identify the AR [4]. The combination of 
these two techniques gives good synthesis results and a 
meaningful control interface for transformations. The 
overall model is a feed forward schema composed by a 
time-varying MA filter excited with white noise followed 
by an AR filter, as in Fig. 1 
 
 
 
 
 
 
 
 

Fig. 1: Schema of the noise model.   

 
Referring to Fig. 1, the linear prediction analysis permits 
to estimate the quasi-stationary spectral envelope of the 
desired signal s. This spectral envelope can be removed by 
deconvolving s with the inverse filter, i.e. the all-zeros 
filter A1(z), and an excitation signal y is obtained as 
prediction error.  If s does not have rapidly changing 
transients,  the prediction error is ‘nearly’ white. 
Otherwise, a further modeling of the rapidly changing 
characteristics is required. This task is accomplished by 
the adaptive filter C(z), that is realized using an RLMS 
algorithm. This process permits to reproduce the signal y 
by a time-varying FIR filter excited with a real white 
gaussian noise input, with variance equal to the noise 
energy.  
It has to be noted that, in this preliminary form the filter 
coefficients are computed and stored at sample rate. This 
makes the algorithm quite inefficient from an encoding 
point of view, and suitable strategies are under 
investigation. 
 
In some cases, sounds from acoustic instruments are 
characterized by a noise energy that is weak relative to the 
sinusoidal energy, so that the stochastic component retains 
some of the tuning characteristics of the deterministic 
component. Even though a single AR filter with 
sufficiently high order will fit the desired spectral 
envelope, it is common practice to separate the linear 
prediction schema in a long-term predictor, responsible for 
the periodicity of the signal (i.e., the fine structure of the 
spectrum) and a short-term predictor, responsible for the 

gross structure of the spectrum.  The schema is shown in 

Fig. 2.   
 
 
 

Fig. 2: Schema of  the comb-based AR filter.   

 
 
This representation provides a mean of manipulating the 
noise independently form the deterministic part, as the 
comb filter can be easily tuned, and the all-poles filter can 
be interpreted as a formant modeler. The AR filter 
corresponding to this configuration can be written as  

  
 
 
 
A two-step approach is usually adopted for  the 
identification of the two cascaded filters: first, a low-order 
LPC filter is used to remove the short-term correlation in 
the signal; then a comb filter is identified to remove the 
long term correlation [6]. Here, we use a different 
approach. We observe that the denominator polynomial 
provided by a conventional LP analysis of tuned noise 
presents most of the times a structure that is coherent with 
the representation of Fig. 2 (see, for example, the dashed 
line of Fig. 3, representing the coefficient of the 
polynomial): i.e. it has the right-most part that resembles 
the left-most part, scaled by a constant less than one in 
modulus, and it presents low-energy coefficients in the 
middle. Based on this observations, the algorithm is as 
follows: first, a conventional LP analysis of sufficiently 
high order is performed, resulting in a high-order 
polynomial A1(z) with coefficients [1 a1,1 ... a1,P]. Then, an 
autocorrelation analysis on the coefficients is used to 
estimate the parameter L (and, as a consequence, the order  
N of the filter A(z)). If the similarity of the first and the last 
N+1 coefficient  is pronounced, then the easiest way to 
have the desired approximation is to simply take A(z)=[ 1 
a1,1 ... a1,N] and g= a1,L  (Fig. 4 show the corresponding 
results).  This approach has the advantage that the final 
representation is stable for pitch transformations.  
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Fig 3: Coefficients of the polynomial A1(z). Dashed line: 
original LP analysis with filter order P=55; continuos 
line: adaptation of A1(z) to the comb-based schema with 
N=13 and L=42. 

 

However, since this approximation is not always accurate, 
especially for low pitch tuned noises, a valid alternative is 
to perform a second optimization step (once L and N are 
known), solving a constrained LS problem. In this case, 
the Youle-Walker equations are solved with an iterative 
method, and the coefficients a1,(N+1) ... a1,(L-1) are forced to 
assume low-energy values. 
 
 

Fig 4: Identification of the AR filter. Upper plot: desired 
spectrum. Lower plot: AR model identification, traditional LP 
analysis (dashed line) vs adapted comb-based AR model 
(continuos line). 

 
 

3. RESULTS AND DISCUSSION 

The model just presented above is suitable to 
transformations of signals, since every part of the model 
controls a determined characteristic of the process and a 
sound transformation schema is organized as follows.  

 
Two different realizations of time stretching are used for 
transients and quasi-stationary regions: transients are 
stretched by an opportune interpolation of both the MA 
adaptive filter coefficients c, and the time-varying gain of 
the input white noise, which has been estimated in the 
analysis step as the energy envelop of the signal. Slowly-
varying regions of the signal are stretched, in the simplest 
case, by acting only on the AR filter (in this case the MA 
filter is reduced to a constant). Here, the gain of the input 
white noise, estimated as before, is interpolated. However, 
when time stretching is to be performed on a region of the 
signal modeled by both the AR and the MA filters, the two 
actions described above are synchronized to obtain the 
desired effect.  
When a comb-based extended structure of the AR filter is 
used for tuned noise, the tuning characteristics of the 
signal are controlled by changing the length L of the comb 
delay line. The parameter g is used to determine the 
bandwidth of the partial-related energy bands, in order to 
control the tuning degree of the noise.  
In any case, the AR filter is organized in second-order cells 
to have independent access to the single energy formants.  
Transformations of the short-term spectral envelope can be 
done by changing the central frequencies and bandwidths 
of the second-order AR cells.  
The analysis/resynthesis schema has been tested on some 
sounds from monophonic instruments: in particular, two 
examples of a flute and an oboe residuals (sampled at 
22050 Hz, 16 bit/sample) are shown in Fig. 5, 6 and 7. 
Informal listening tests demonstrate that the signals 
generated with the proposed model are perceptually 
indistinguishable from the target signals, and that the time 
scale and tuning transformations are quite realistic.  
 
 
 
 

Fig. 5: time stretching of a flute residual noise (attack 
transient). It has been stretched by interpolation of the 
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adaptive MA filter coefficients and input gain, from start 
to 0.4 sec. Then, a simple AR model is used for the 
remaining release part, and the time stretching is done by 
interpolating the analysis gain for the excitation white 
noise.   

 

Fig. 6: Example of a tuning control, by means of a change 
of the parameter L in the comb-filter. Upper figure:  
target spectrum. Middle figure: spectrum of the signal 
resynthesized by means of the adapted AR model. Lower 
figure: signal resynthesized  with a shorter delay line of 
the comb filter.  

 

Fig. 7: Example of a time stretching  by means of a AR 
model of the stationary region of the residual noise. 

 
 
 

4. CONCLUSIONS 

A model of the noisy part of  sounds has been proposed. It 
consists of two parts: the first is represented by a FIR filter 
which uses the adaptive technique of RLMS algorithm; the 
second is instead represented by an all-pole filter obtained 
by an algorithm of linear prediction coding. The first filter 
is responsible for the modeling of transients, while the 
latter filter is responsible for the stationary spectral 
structure of the noise. A comb-filter structure has been 
used for tuned noise, where the AR original filter is 
splitted in two AR filters taking into account respectively 
the tuning and the formantic structure of the spectrum. 
This model has given very good performances, both in 
resynthesis of sounds and in their transformations, such as 
time stretching. It has been proved for the noisy part of 
sounds from monophonic instruments, in particular flute 
and oboe. 
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