
 Proceedings of the COST G-6 Conference on Digital Audio Effects (DAFX-00), Verona, Italy, December 7-9, 2000

 DAFX-1

A MODULAR REAL-TIME PC-BASED AUDIO PROCESSING TOOL FOR
EFFECT DEVELOPERS, ENGINEERS, MUSICIANS, AND EDUCATORS

Yusuf Jafry, PhD

Sounds Logical, Leiden, The Netherlands
www.soundslogical.com

yjafry@soundslogical.com

ABSTRACT

A modular real-time PC-based audio processing software tool has
been developed which offers a high degree of user control,
intended for use by audio effect developers, signal processing
engineers, sound designers, musicians, and educators. The key
technical features are described, followed by a range of example
applications in the field of signal processing and audio effect
design.

1. INTRODUCTION

The disciplines of audio signal processing and computer music
encompass a wide range of mathematical and engineering
techniques which are often “hidden behind the graphics” of
commercially-available audio manipulation software products.
Whereas these products span a broad range of audio applications,
they tend to be of a “black box” nature, and, thereby, are usually
inappropriate for engineering prototyping or educational
environments where flexibility, visibility, and controllability are
the key requirements. For example, the developer, engineer,
educator, or student wants to try out his/her own filter design and
hear what it sounds like on audio material of their choice, without
having to resort to writing their own code (at least not
immediately!). “WaveWarp” is a software tool developed
specifically for those applications where flexibility is essential.

2. SOFTWARE DESCRIPTION

2.1. Overview

The architecture of the software is modular, comprising a library
of pre-compiled DSP components which can be connected
together in any desired fashion (series, parallel, feedforward, and
feedback). All components are processed sample-by-sample,
enabling the design of sample-perfect signal flow networks in an
intuitive “WYSIWYN” (what-you-see-is-what-you-need) manner.
Moreover, the audio engine is intrinsically multi-rate, enabling on-
the-fly integer-factor sample-rate conversion between

components. This facilitates, for example, the rapid construction
of elaborate polyphase filter networks, again in a straightforward
“WYSIWYN” manner – a task which is notoriously cumbersome
and error-prone when carried out “long-hand”. Additionally, the
software architecture is intrinsically multi-channel, enabling the
straightforward construction of customizable “surround sound”
designs. The software runs in real-time on a standard Pentium®-
class PC, and all processing is fully “native”, requiring no
peripheral hardware except a Windows®-compatible sound-card.
Multiple sound-cards and/or multi-channel sound-cards are fully
supported. In addition to audio file and live I/O support, the
software interfaces directly with other applications via industry-
standard protocols (DirectX, etc), enabling seamless integration
into existing computer studio/laboratory environments. The
software also includes interfaces to the MATLAB technical
computing environment, providing seamless access to powerful
analysis, design, and visualisation capabilities.

2.2. Modular DSP component library

The main categories of modular signal processing components
included in WaveWarp are listed in Table 1.

Table 1 List of WaveWarp's modular processing
component categories.

CATEGOR
Y

DESCRIPTION

Audio files Audio files in WAV and ASCII format for use as
data sources or sinks. Audio files can be played
back with arbitrarily controllable sample ordering
(e.g. for granular synthesis).

I/O devices Windows-compatible soundcard drivers and
DirectX ports for using sound-card I/O and 3rd-
party editor/sequencer applications as data
sources or sinks.

Basic
connections

Basic connection components such as summers,
multipliers, switches, etc., plus basic arithmetic
components (which operate primarily on
parameter control signals).

 Proceedings of the COST G-6 Conference on Digital Audio Effects (DAFX-00), Verona, Italy, December 7-9, 2000

 DAFX-2

Delays Digital delay components (including simple delay,
feedback delay, reverse delay, controllable time-
varying delay etc.)

Digital filters Recursive (IIR) digital filters including
Butterworth, Chebyshev, Inverse Chebyshev, &
Elliptic designs; generalized 2nd order highpass,
lowpass, bandpass, bandstop, peak & notch
designs; all-pass designs; non-recursive (FIR)
digital filters including windowed lowpass,
highpass, bandpass, bandstop designs, in both
direct and fast (FFT-based) implementations.
Most filters include an ASCII file interface for
implementation of off-line filter designs (e.g. via
MATLAB).

Displays and
scopes

Real-time digital displays, oscilloscopes, and
spectrum analysers.

Distortion Non-linear amplitude distortion and wave-shaping
components.

Dynamic
range
controllers

Compressors, expanders, limiters, and noise gates,
plus the basic blocks for building customized
dynamic processors.

Flangers and
chorus

Flanger and chorus components plus the basic
blocks for building customized flangers and chorus
(based on time-varying modulated delays).

MATLAB MATLAB-enabled components which interface
seamlessly with the MATLAB environment,
utilising MATLAB for design, visualisation, and
real-time processing. Components include FIR
and IIR digital filters, “MATLAB in the loop”
real-time processors, oscilloscopes based on
MATLAB GUI’s, MATLAB-based signal and
envelope generators, etc.

Mixers Multi-channel mixers.
Mult irate Integer-factor down-samplers, up-samplers,

decimators, interpolators, and filterbanks.
Noise
reduction

Noise reduction components (based on spectral
subtraction).

Panners Panners (static and time-varying).
Phasers Phaser components plus the basic blocks for

building customized phasers.
Pitch shifters Simple (time-domain) pitch shifters.
Reverbs Reverb components plus the basic blocks for

building customized reverbs.
Signal
generators

Signal and envelope generators including sine
wave, triangular wave, square wave, periodic and
pseudo-random white noise and telegraph noise,
chaotic sequences, impulse and pulse trains,
ADSR envelope generators, etc., plus amplitude
and/or frequency controllable oscillators. Many of
the oscillators and signal generators include an
ASCII file interface for importing off-line
wavetable and envelope designs (e.g. from

MATLAB).
Spectral
transformers

Frequency-domain effects such as convolution,
spectral cross-synthesis, spectral shaping,
morphing, etc.

3. EXAMPLE APPLICATIONS

3.1. Example: reverberation based on a random FIR filter

The schematic in Figure 1 depicts an artificial reverberator (room
simulator) based on an exponentially-decaying pseudo-random
FIR filter. The design, adapted from [2], is novel in the fact that
the FIR filter taps are chosen randomly rather than from measured
room responses or geometrical ray-tracing models. The FIR filter
represents the "early reflections segment", with a feedback delay
path ("around" the FIR filter) to create the dense reverberant field.
Low-pass filters are added in the forward and backward paths to
represent the absorption in the air (found to significantly improve
the subjective quality of the reverberant effect [2]). Figure 2
contains a screenshot of the WaveWarp implementation of this
reverberator algorithm. Again, the layout closely resembles the
corresponding block diagram (Figure 1), thereby illustrating the
convenience of WaveWarp's modular architecture. In this example,
all the filters are designed in MATLAB then imported to
WaveWarp via a seamless interface, thereby combining the
powerful design capabilities of MATLAB with the high-speed
real-time audio processing capabilities of WaveWarp. As noted in
[3], MATLAB is too slow for practical computation of the large
convolutions typically required for realistic reverberation (and
other computationally intensive signal processing algorithms),
especially at the high sample rates required for professional audio.
WaveWarp, on the other hand, is designed specifically for such
purposes.

Figure 1 Schematic of the reverberation algorithm adapted
from [2].

lowpass

gain

FIR

lowpass delay

 Proceedings of the COST G-6 Conference on Digital Audio Effects (DAFX-00), Verona, Italy, December 7-9, 2000

 DAFX-3

Figure 2 WaveWarp implementation of the reverberation
algorithm depicted in Figure 1. The FIR filter has 8092-
taps, the feedback delay is equal to the FIR length, and the
IIR low-pass filters are first-order. In this example, all
filter designs were carried out in MATLAB then imported
to WaveWarp for execution in real-time at 44.1 kHz with
zero latency. The input signal in this case is a stored audio
file in WAV format ("drums.wav").

3.2. Example: “MATLAB-in-the-loop” real-time processing

The screenshots in Figure 3 illustrates the use of WaveWarp’s
seamless interface to the MATLAB programming environment.
Specifically, WaveWarp sends the real-time audio stream (in this
case, from the WAV file "Wavewarp.wav") into MATLAB where
it is processed in real-time (by any arbitrary algorithm written in
MATLAB), then returned to WaveWarp for further processing or
playback. Via this intuitive and versatile interface, it is
straightforward to enter any valid MATLAB expression to define
the desired real-time input-output relationship on a buffer-by-
buffer basis. The example in Figure 3 utilises the built-in
MATLAB function "Y=flipud(X)" which has the (entertaining)
effect of reversing the audio (chunk-by-chunk). Naturally, this can
be replaced by any other expression which makes use of
MATLAB workspace variables, m-file scripts, m-file functions,
and compiled mex functions (for speed).

Figure 3 Demonstration of WaveWarp's real-time
"MATLAB-in-the-loop" capabilities. The "MATLAB In The
Loop" component (in the upper panel) corresponds to a
MATLAB GUI (lower panel) which enables the user to
enter any desired input-output relation.

3.3. Example: controllable audio file playback and
"granular sythnthesis"

The screenshot in Figure 4 illustrates the use of WaveWarp’s
controllable audio file playback mechanism which enables the
individual samples of an audio file to be played back in any
arbitrary order (rather than in the usual manner of one after-the-
other in succession). This enables interesting and elaborate effects
to be achieved at low computational expense. For example, by
selecting successive groups of samples (or "grains") and playing
each group at a user-definable arbitrary rate and repeating the
playback of each group for a user-definable arbitrary number of
repetitions, a wide range of sounds can be synthesised from a
single audio file.

Figure 4 WaveWarp implementation of a "granular
synthesiser" built from scratch.

 Proceedings of the COST G-6 Conference on Digital Audio Effects (DAFX-00), Verona, Italy, December 7-9, 2000

 DAFX-4

3.4. Example: educational demonstration of aliasing

The example layout in Figure 5 is for educational purposes,
illustrating the phenomenon of aliasing associated with digital
sample-rate conversion. This example makes use of the multirate
processing capabilities of WaveWarp whereby the sample rate can
vary (by integer factors) throughout the network. In this case, the
original (sine-wave) signal with a sample rate of 44100 Hz is
down-sampled (by a factor of two) to 22050 Hz. Two down-
samplers are compared for educational purposes: a simple one
(upper branch of network) which merely omits every second
sample, and a more elaborate one (lower branch) which contains a
built-in Nyquist filter for alias protection. As can be observed in
the spectrum analysers (lower panel), the alias suppression
attained via the Nyquist filtering (right plot) is clearly observed
(and audible) as a reduction in the 'spike' corresponding to the
dominant aliased term.

Figure 5 WaveWarp demonstration of the well-known
aliasing phenomenon.

3.5. Example: educational demonstration of a two-channel
filterbank

Figure 6 contains the block diagram of a two-channel "filterbank
without filters" (adapted from [1]) which serves to emphasise
that perfect reconstruction can be achieved from down-sampled
data as long as all information in all channels (or “phases”) is
retained. In this example, the output is identical to the input --
except for the unit delay. This is achieved in spite of the fact that
the signal is down-sampled then up-sampled by a factor of two.
The key to the perfect reconstruction is that the “even” (upper
branch) and “odd” (lower branch) “phases” are retained
throughout.

Figure 6 An educational example of a two-channel
"filterbank without filters" (adapted from [1]). In a real
application, there would be filtering (and other processing)
applied between the down- and up-samplers.

Figure 7 contains a screenshot of the WaveWarp implementation
of the two-channel “filterbank without filters” from Figure 6.
Note the convenience of WaveWarp's modular architecture,
whereby the processing components are connected together in an
intuitive manner, closely mirroring the layout in the block diagram
of Figure 6. Also note how the multirate capabilities of
WaveWarp enable the signal(s) to be re-sampled (by an integer
factor , in this case by two) at any point of the network.

Figure 7 WaveWarp implementation of the two-channel
"filterbank without filters" from Figure 6. In accordance
with expectations, the output is observed to be an exact
replica of the input delayed by one sample, thereby
demonstrating WaveWarp's "sample-perfect" multirate
architecture.

3.6. Example: four-octave -band equaliser

The screenshot in Figure 8 illustrates a practical use of
WaveWarp’s multirate processing capabilities to create a four-
octave-band equaliser built from cascaded two-channel filterbanks
in combination with with individual gains for each spectral band.
For efficiency, the filterbanks used here are hard-coded
components rather than built from scratch (as in the previous
educational example). Specifically, they utilise IIR all-pass
structures in polyphase form. WaveWarp has many such hard-
coded components in addition to the basic building blocks.

Zà1
Zà1# 2

2 " 2
" 2

+

xn

xnà1

 Proceedings of the COST G-6 Conference on Digital Audio Effects (DAFX-00), Verona, Italy, December 7-9, 2000

 DAFX-5

Figure 8 WaveWarp implementation of a four-octave-band
equaliser built from scratch.

4. CONCLUSIONS

A PC-based audio processing software tool has been developed
with the explicit purpose of providing a high degree of flexibility
and control to the user. Examples of usage have been presented,
focusing on applications in signal processing and audio effect
design.

5. REFERENCES

[1] Strang, G. and Nguyen, T., "Wavelets and Filter Banks",
Wellesley-Cambridge Press, 1996.

[2] Rubak, P. and Johansen, L.G., “Artificial reverberation based
on a Pseudo-random Impulse Response II”, Paper No.
4900(G6), AES 106th Convention, Munich, Germany, 1999.

[3] Beltran, F. A., Beltran J.R., Holzem, N. and Gogu, A.,
“Matlab Implementation of Reverberation Algorithms”,
Proc. Workshop on Digital Audio Effects (DAFx-99),
Trondheim, Norway, 1999.

