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ABSTRACT 

We address the issue of automatically extracting rhythm 
descriptors from audio signals, to be eventually used in 
content-based musical applications such as in the context of 
MPEG7. Our aim is to approach the comprehension of 
auditory scenes in raw polyphonic audio signals without 
preliminary source separation. 
As a first step towards the automatic extraction of rhythmic 
structures out of signals taken from the popular music 
repertoire, we propose an approach for automatically 
extracting time indexes of occurrences of different 
percussive timbres in an audio signal. Within this 
framework, we found that a particular issue lies in the 
classification of percussive sounds. In this paper, we report 
on the method currently used to deal with this problem. 

1. INTRODUCTION 

Most of the work on automatic audio descriptors focuses on 
1) low-level or mid-level descriptors (see e.g. [4]) and 2) 
small or middle sized audio data, typically sounds (see e.g. 
[7] or [12]). In our ongoing project, we focus on high-level 
descriptors that describe music titles in a global fashion. 
Such global musical descriptors typically include tempo 
(see e.g. [9]), type of instruments, but also musical genre, 
rhythm type, etc.  
Rhythm is acknowledged to be a fundamental dimension of 
music perception, a wide field of investigation in computer 
music concerns with transcription and understanding of 
rhythm (e.g. works by Peter Desain and Henkjan Honing); 
however, it is still a poorly understood phenomenon. 
Designing cognitive models on rhythm perception (e.g. [3]), 
producing acceptable notations from a list of onset times 
such as MIDI notes (e.g. [2]), and deriving from it 
musicological abstractions, like tempo and meter (e.g. [1]), 

are still unsolved problems and are clearly out of the scope 
of this paper. 
Some works regarding the automatic transcription of 
percussive music exist (e.g. [11]), nonetheless, there exists 
no reference representation of rhythm that can be used  for 
classification purposes. To produce such a representation, 
we believe that we need to extract from the audio signal 
occurrences of percussive timbres; the reason being that we 
target applications dealing with popular music, in which 
rhythm is a predominant feature that is mainly given by a 
particular set of timbres: the drum sounds. 
The problem we address here is precisely the classification 
of percussive timbres into two classes: snare-like and bass 
drum-like sounds, as found in popular music titles. We now 
give a short overview of the detection scheme used to 
provide time indexes of occurrences of percussive timbres. 
The classification task discussed in this paper is successive 
to this detection and prior to the design of higher-level 
representations of rhythm. The integration of the results 
presented here in a complete system for automatically 
extracting rhythmic structures from audio is the object of a 
forthcoming paper.  
 
For a given musical excerpt input, we intend to determine 
two time series of temporal indexes at which two different, 
perceptively important, rhythmic events take place; in our 
framework: the snare-like and bass drum-like sounds. The 
percussive sound detection scheme currently used applies 
correlation techniques with percussive sounds templates. 
These templates may be synthesized so that they would 
permit to deal with the greatest musical database possible; 
so they may not be too specific (e.g. an actual snare drum 
sound would be efficient for only a very few number of 
titles). Wanting to use generic sounds templates in our 
detection scheme, we must consider the fact that some 
artefacts are present in the detected occurrences. These 
artefacts are precisely occurrences of the second percussive 
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sound that is important in the perception of the rhythm (see 
Figure 1). 

 
Figure 1: Correlation between a one-second excerpt and a 
template sound. Here, artefacts in the detection scheme 
correspond to the peaks with amplitude around .3. 

Eventually, the classification task addressed here is very 
specific. Given any musical title from large popular music 
databases, and making the assumption that the stream of 
events to classify is made up of only two families of events, 
snare-like sounds and bass drum-like sounds – what yields 
our detection method – we address here the issue of their 
discrimination.  
The purpose of this article is to introduce the choice of a 
precise physical parameter for this classification task. 
At that point, let’s stress the fact that the issue is not to 
design a universal timbre space over which one would 
project any drum sounds and would be able to identify them 
(as in e.g. [6]). We look for a sound feature that would 
permit to differentiate snares and bass drums in any musical 
excerpt, nonetheless, the difference between the automatic 
source identification topic and ours lies in the fact that the 
actual classes boundaries corresponding to classification 
features may differ from one given title to another. Indeed, 
physical attributes of snare and bass drum sounds differ 
greatly when considering large databases of titles. Besides, 
we believe that this is a good reason to investigate towards 
non-supervised classification methods (where it is assumed 
that no database of labelled data is available prior to the 
classification). We look for a parameter that can 
characterize differences between timbres that would be 
relative to musical excerpts rather than absolute. 
 
The following part describes the multiple features 
examined that were computed over synthesized as well as 
real percussive sounds, introducing the sound segmentation 
scheme used. Examining two classification methods 
(Discriminant Factor Analysis and Agglomerative 
Clustering), we describe experimentations permitting to 
identify the best feature fitting our demands. We then 
propose conclusions and discussions. 

2. EXTRACTION OF PERCUSSIVE SOUNDS 
FEATURES 

In the search for a sound feature that would be relevant in 
respect to our classification purpose, we developed signal 
processing algorithms to extract several physical 
parameters. The target is to extract parameters from a 
relatively short signal, assumed to be percussive, but also 
mixed with important levels of noise (i.e. actual noise or 
any other instrument overlapping). 
We first segment the sounds in several regions: an "attack" 
region (before the onset), a "decay" region (after the onset), 
and two "noise" regions at the extremities.  

2.1. Segmentation 

In order to avoid thresholds-based algorithms, whose 
goodness is too dependent on the level of noise, the 
segmentation scheme used here is based on the detection of 
temporal envelopes over absolute values of the signals (as 
in [11]).  

 
Figure 2: Rough envelope of an overall percussive sound 
extracted from a musical title. 

Since the sounds we deal with may be mixed with noise, a 
very accurate envelope of the signal around the onset is 
hard to determine. However the goodness of the 
determination of the attack and decay times is directly 
linked to the accuracy of the envelope. We determine 
envelopes by finding the maximum of the waveform in 
windowed portions of the signal. Because the attack time is 
typically very short, and the sound is non harmonic, we 
cannot use the FFT to determine the size of the window (as 
done in e.g. [11]). Instead, we determine the window size 
by a local search algorithm which stops when it finds a 
window size which is stable (with respect to attack time 
estimation).  
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Figure 3: Absolute value of the signal (bass drum) before 
the onset and its envelope. Bad window size (too small), 
we enter the intraperiod of the sound. 

 
Figure 4: Absolute value of the signal (bass drum) before 
the onset and its envelope. Satisfying window size. 

The attack and decay time are computed by a scheme 
focusing on the slopes of successive portions of the 
envelope (e.g. maximum-slope detection for the attack, 
relative flatness for the decay), achieved over the envelope 
in the regions respectively preceding and following the 
onset. With a sampling frequency equal to 11025 Hz, this 
method works with an uncertainty of approximately 30 
samples, which corresponds to 3 ms. 

2.2. Features 

Labelling percussive sounds regions as attack and decay 
segments, we consider temporal descriptors such as attack 
and decay time; energy parameters, as well as frequencial 
descriptors computed over different regions. Since some 
sound regions can be relatively small (about 30 
milliseconds), we also performed Prony modelling over 
attack and decay regions in order to account for a better 
frequencial precision. From this modelling, we keep the 
first 2 coefficients (damping factor and frequency) of the 
frequencial component with the highest magnitude, as well 
as features such as the number of sinusoids found in each 
regions. Eventually, zero-crossing rates have also been 
computed in the regions defined. The exhaustive list of the 
parameters is the following: 

1. Attack time 
2. Decay time 
3. Focusing on the envelope of the attack region, the 

time difference between the index of maximum 

slope and the onset ; that gives an indication of the 
sharpness or the smoothness of the attack. 

4. Number of sinusoids in the Prony modelling of the 
reversed attack region. 

5. Number of sinusoids in the Prony modelling of the 
decay region. 

6. Maximum magnitude component in the Prony 
modelling of the reversed attack region. 

7. Maximum magnitude component in the Prony 
modelling of the decay region. 

8. Exponential decay factor of the maximum 
magnitude component in the Prony modelling of 
the reversed attack region. 

9. Exponential decay factor of the maximum 
magnitude component in the Prony modelling of 
the decay region. 

10. Maximum magnitude component in the Fourier 
Transform of the attack region 

11. Maximum magnitude component in the Fourier 
Transform of the decay region – below the 
StrongestPartialFFT_Decay 

12. Maximum magnitude component in the Fourier 
Transform of the whole percussive sound 

13. Local mean energy of the attack region 
14. Local mean energy of the decay region 
15. Local mean energy of the whole percussive sound 
16. Proportion between local mean energy of  the 

attack and the decay regions 
17. Zero-Crossing Rate (ZCR) of the attack region –

below the ZCR_Attack 
18. ZCR of the decay region – below the ZCR_Decay 
19. ZCR of the whole percussive sound 

2.2.1. ZCR computation 

It is defined as the number of time-domain zero-crossings 
within a defined region of signal, divided by the number of 
samples of that region. 
The ZCR algorithm was implemented with a concern for the 
handling of two additive noises. The signal we are dealing 
with are very short (typically <100 ms), thus, a very low 
frequency note (w.r.t. the inverse of the duration of the 
signal), played by an overlapping instrument (e.g. a bass), 
acts as a disruptive element over the average level. The 
second type of noise we want to be able to deal with 
concerns the other instruments’ high frequency components 
(again w.r.t. the inverse of the duration of the signal), which 
amplitudes can be considered inferior to the percussive 
sound’s amplitude around the onset (e.g. voices, cymbals). 
These two characteristics of signals are considered as noise 
in the determination of the ZCR of the percussive sounds. 
Thus, in order to avoid artefacts, prior to the actual 
computation of the ZCR, the signal is transformed as 
followed : 
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1. A DC offset is computed and subtracted.  
2. The signal is passed through a 30 dB noise gate. 
The ZCR is then computed, focusing on the changes of sign 
of the signal, using a sample-by-sample sequential 
algorithm: 
 
n = 0; 
temoin = 1; 
for i=2:N 
 if (sign(x(i))==sign(x(i-temoin))) | (sign(x(i))==0), 
      temoin = temoin+1; 
   else n = n+1; 
      temoin = 1; 
   end; 
end;  ZCR=n/N ; 

3. CLASSIFICATION OF PERCUSSIVE SOUNDS 

Within the framework of the classification of percussive 
sounds into a snare-like class and bass drum-like one, we 
present here the experimentations achieved over the set of 
features previously described.  
To achieve the classification, we first identify the 
dimensions of percussive sounds that seem the most 
relevant to our problem. We then validate the choice of one 
of these dimensions on larger data sets. 

3.1. Identification of a relevant dimension 

To test the relevance for classification tasks of several 
features of percussive sounds, we consider the framework 
of supervised analysis (i.e. considering that a database of 
labelled data is available for a pre-processing phase). As a 
starting point, we describe percussive sounds in a large and 
redundant representation space (as in e.g. [8]), consisting of 
the 19 parameters described above. 
Amongst the extracted features of all the sounds, we look 
for the most relevant for our discrimination task. This pre-
processing is done by applying a Discriminant Factor 
Analysis that uses the Fisher criterion (see e.g. [13]).  

3.1.1. Discriminant Factor Analysis 

The scheme consists in determining the axis, over which 
projection of the data is achieved, permitting to best 
separate the classes. In the Fisher criterion’s framework, an 
axis, labelled u , permits a good projection if the distances 
between the averages of the classes are important, and if the 
variances within each class are small. 
The following is defined: 
B: the interclass dispersion matrix 
S: the intraclass dispersion matrix 

Fisher criterion: Suu
BuuuJ '
')( =  

One can also define  
T: the covariance matrix 

and the criterion Tuu
BuuuI '
')( =  

and verify that SuuBuuTuu ''' +=  
 
Determining )(uJ for each axis u , the more this criterion 
is important, the more the associated axis is discriminant. 

3.1.2. Pre-processing database 

We consider a database consisting of samples taken from 
the Korg 05RW's General MIDI drum kit. These sounds are 
classified into two categories by hand: bass drum sounds 
(15 sounds) and snare sounds (6 sounds). 
 
This analysis indicates that: 
• there are two dimensions which, taken alone, allows to 

differentiate the sounds: ZCR_Decay (zero-crossing 
rate computed over the decay region) and the 
StrongestPartialFFT_Decay. These two parameters are 
approximately as discriminant. 

• ZCR_Decay is 1.3 times more discriminant than 
ZCR_Attack. 

We now investigate the goodness of the reduction of the 19-
dimensional space onto a single dimension. 

3.2. Validation 

We apply an Agglomerative Clustering method (i.e. non-
supervised analysis) over a set of sounds projected in the 
representation space yielded by the pre-processing phase, to 
check the relevance of the parameter used for measuring 
distances between sounds.  

3.2.1. Agglomerative Clustering 

Computing the values of the chosen parameter for a set of 
sounds, we actually project these sounds over a vector 
space (in this particular case: 1-dimensional). These 
measures, representative of each sound, allow to compute 
distances – relative to this dimension – between sounds.  
Given n sounds, initially, n groups of single elements are 
constructed. Regarding the distances between groups, the 
two closest ones are agglomerated in a single one. This 
scheme is iterated (n – 1) times, so that the clustering 
method eventually yields only two clusters.  
Given a measure over a dimension, determining the 
distances between singletons is achieved easily, the problem 
resides in determining a distance between a singleton and a 
group, or between two groups. Solutions to this problem 
differ whether one considers solely the relative distances 
between elements, or the absolute projection values of each 
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element over the vector space (in some problems, these 
values are not directly accessed). In the latter case, one 
generally computes centres of gravity of groups and uses it 
as a distance measure between groups. In the former case, 
the literature is wide, some solutions are the average 
distance (average distance between each couple of 
elements), the minimal radius (smallest distance between all 
the couples of elements of both groups), or the maximal 
radius. 
Let { }nIIG ,11,11 ,...,=  and { }mIIG ,21,22 ,...,=  be two 
groups of sounds, the following proximity measures 
between groups are defined: 
• Average distance 

( ) ( )��
= =

=
n

i

m

j
jiAverage II

mn
GG

1 1
,2,121 ,Prox

*
1,Prox  

• Minimal radius 
( ) ( ) [ ] [ ]{ }mjandniwithIIGG jiR ,1,1,,ProxMin,Prox ,2,121min ∈∈=  

• Maximal radius 
( ) ( ) [ ] [ ]{ }mjandniwithIIGG jiR ,1,1,,ProxMax,Prox ,2,121max ∈∈=  

Where ( )21,Prox II  is the proximity measure between 
instrument sounds.  
Other possibilities are thinkable, for instance, one can use 
the distances to the square. 
 
The maximal radius and average distances have been 
implemented. 
Different types of sounds have been used for the validation 
tests. 

3.2.2. Monophonic/clean sounds 

The first data set used for validation is made up of thirty-six 
bass and snare drums sounds taken from other Korg 05RW 
drum kits − Jazz Kit, Brush Kit, Dance Kit and Power Kit. 
It is important to notice that these sounds are monophonic 
and very clean. We feed these sounds as input to the 
agglomerative cluster analysis, and compute distances 
between sounds according to ZCR_Decay and the 
StrongestPartialFFT_Decay dimension. In both cases the 
clustering in two classes yields a snare drum class and a 
bass drum class with 94.5 % accuracy: ZCR_Decay and 
StrongestPartialFFT_Decay are as efficient. 

3.2.3. Polyphonic/noisy sounds 

Things change when dealing with real sounds. We used data 
sets made up of real sounds taken from excerpts of popular 
music titles. To build a data set of “real sounds”, we use a 
percussive sound detection scheme currently developed in 
our project and briefly described in the introduction. 
In real music, percussive sounds are not as “pure” as in 
synthesizers sound banks: occurrences of bass drum or 

snares are often mixed with the rest of the music (voices, 
parts of the electric bass, and more generally “noise”). Our 
rationale here is not to attempt to separate the “pure” 
percussive sound from the rest of the music, but rather to try 
to classify the short music segment as a whole. 
For each twenty seconds excerpt (20 excerpts from a 
popular music database have been used), the number of 
percussive sounds as given by our detection scheme varies 
from 19 to 63. 
Using the StrongestPartialFFT_Decay dimension, the 
clustering of these sounds in two classes yields a snare 
drum-like class and a bass drum-like class, with an accuracy 
varying from to 78% to 89% depending on the actual music 
excerpt. The results are approximately the same for the 
ZCR_Attack dimension. 
However, using the ZCR_Decay dimension, the clustering 
of these sounds yields an accuracy varying from 87.5 to 
96%, which is better. 

4. CONCLUSION 

In classification tasks, it is generally understood that issues 
one is likely to address are the following: the type of 
features to use, the actual classification method to use and, 
in the case of supervised analysis, the size of the data set 
for the pre-processing phase. This paper doesn’t claim to 
present a review of instrument classification techniques (as 
done in [5]). The precise classification task we address here 
is different from the identification task the reader may be 
used too (training of the system with a large data set of 
labelled data, and then actual classification). As the 
physical attributes of snare and bass drum sounds differ 
greatly when considering large databases of titles, and so 
does the type of noise surrounding, the classification 
scheme used should permit the classes boundaries to differ 
from one given title to another. This justifies the use of a 
non-supervised classification technique: Agglomerative 
Clustering. However, to compute distances, this technique 
must be fed an input parameter: the dimension over which 
sounds are projected. In order to get clues regarding 
relevant dimensions, we believe that defining a large 
number of percussive sounds’ features, and achieving a 
Discriminant Factor Analysis over a small set of sounds is 
justified. 
As introduced in the first paragraph, the issue addressed 
here is not the design of a universal timbre space over 
which one would achieve instrument identifications. This 
research topic assumes that monophonic and clean sounds 
are provided. In the framework of the content-based 
description of audio achieved directly from commercial CD 
samples, this implies that efficient source separation 
techniques are applied as a preliminary step. Instead of 
restricting the applicability of classification algorithms to 
such a preliminary stage, we believe that we must devote 
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our efforts to an approach of signal understanding without 
separation (see [10]). Our way to approach this theme is to 
deal directly with real polyphonic signals and to set 
simpler, but more specific objectives as the one addressed 
in this paper’s abstract. We believe that the extraction of 
time indexes of percussive timbres occurrences in audio 
signals is a first step to be taken towards the automatic 
extraction of rhythmic structures, and that it can be seen as 
a symbolic intermediate between very low level 
representation of the information (the signal itself) and 
higher level of abstraction of the information (the rhythm 
structure). 
The classification of percussive sounds holds a central 
position in the process of extracting these time indexes, and 
we believe that the ZCR_Decay dimension (as introduced 
before, the ZCR algorithm was designed with a concern for 
the handling of additive noises) is the feature that best fits 
our specific demands. It can be used over large data sets to 
achieve satisfying discrimination between two important 
classes of percussive sounds. We observe that, in the case 
of real sounds, such a simple parameter is more appropriate 
than more complicated and computationally time-
consuming ones. Instead of using only ZCR_Decay, we 
could project sounds over a higher dimensional space, 
adding a second dimension being the zero-crossing rate 
computed over the attack regions. We could also use the 
criterion )(uI and look for the best linear mixture of 
parameters weighted by their scores in the Discriminant 
Factor Analysis. However, the gain in accuracy probably 
would not balance the extra computational cost.  
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